The Theory Of Lorentz
10 minutes • 2079 words
Purely mechanical considerations:
-
have failed to explain the relationship between matter and the ether.
-
are even more insufficient in explaining certain effects produced on matter by light, which could not, without grave difficulties, be attributed to movement.
For instance:
- the phenomena of electrification under the influence of certain radiations, or
- chemical reactions such as photographic impressions.
The problem had to be approached by another road.
The electromagnetic theory was a step in advance, but it comes to a standstill at the moment when the ether penetrates into matter.
If we wish to go deeper into the inwardness of the phenomena, we must follow, for example, Professor Lorentz or Dr Larmor, and look with them for a mode of representation which appears, besides, to be a natural consequence of the fundamental ideas forming the basis of Hertz’s experiments.
The moment we look upon a wave in the ether as an electromagnetic wave, a molecule which emits light should be considered as a kind of excitant.
We are thus led to suppose that in each radiating molecule there are one or several electrified particles, animated with a to-and-fro movement round their positions of equilibrium, and these particles are certainly identical with those electrons the existence of which we have already admitted for so many other reasons.
In the simplest theory, we will imagine an electron which may be displaced from its position of equilibrium in all directions. In this displacement, it is submitted to attractions which communicate to it a vibration like a pendulum.
These movements are equivalent to tiny currents, and the mobile electron, when animated with a considerable velocity, must be sensitive to the action of the magnet which modifies the form of the trajectory and the value of the period. This almost direct consequence was perceived by Lorentz, and it led him to the new idea that radiations emitted by a body ought to be modified by the action of a strong electromagnet.
An experiment enabled this prevision to be verified. It was made, as is well known, as early as 1896 by Zeeman; and the discovery produced a legitimate sensation.
When a flame is subjected to the action of a magnetic field, a brilliant line is decomposed in conditions more or less complex which an attentive study, however, allows us to define.
According to whether the observation is made in a plane normal to the magnetic field or in the same direction, the line transforms itself into a triplet or doublet, and the new lines are polarized rectilinearly or circularly.
These are the precise phenomena which the calculation foretells: the analysis of the modifications undergone by the light supplies, moreover, valuable information on the electron itself.
From the direction of the circular vibrations of the greatest frequency we can determine the sign of the electric charge in motion and we find it to be negative. But, further than this, from the variation of the period we can calculate the relation of the force acting on the electron to its material mass, and, in addition, the relation of the charge to the mass.
We then find for this relation precisely that value which we have already met with so many times. Such a coincidence cannot be fortuitous, and we have the right to believe that the electron revealed by the luminous wave which emanates from it, is really the same as the one made known to us by the study of the cathode rays and of the radioactive substances.
However, the elementary theory does not suffice to interpret the complications which later experiments have revealed. The physicists most qualified to effect measurements in these delicate optical questions—M. Cornu, Mr Preston, M. Cotton, MM. Becquerel and Deslandres, M. Broca, Professor Michelson, and others—have pointed out some remarkable peculiarities. Thus in some cases the number of the component rays dissociated by the magnetic field may be very considerable.
The great modification brought to a radiation by the Zeeman effect may, besides, combine itself with other phenomena, and alter the light in a still more complicated manner. A pencil of polarized light, as demonstrated by Signori Macaluzo and Corbino, undergoes, in a magnetic field, modifications with regard to absorption and speed of propagation.
Some ingenious researches by M. Becquerel and M. Cotton have perfectly elucidated all these complications from an experimental point of view. It would not be impossible to link together all these phenomena without adopting the electronic hypothesis, by preserving the old optical equations as modified by the terms relating to the action of the magnetic field. This has actually been done in some very remarkable work by M. Voigt, but we may also, like Professor Lorentz, look for more general theories, in which the essential image of the electrons shall be preserved, and which will allow all the facts revealed by experiment to be included.
We are thus led to the supposition that there is not in the atom one vibrating electron only, but that there is to be found in it a dynamical system comprising several material points which may be subjected to varied movements. The neutral atom may therefore be considered as composed of an immovable principal portion positively charged, round which move, like satellites round a planet, several negative electrons of very inferior mass. This conclusion leads us to an interpretation in agreement with that which other phenomena have already suggested.
These electrons, which thus have a variable velocity, generate around themselves a transverse electromagnetic wave which is propagated with the velocity of light; for the charged particle becomes, as soon as it experiences a change of speed, the centre of a radiation. Thus is explained the phenomenon of the emission of radiations. In the same way, the movement of electrons may be excited or modified by the electrical forces which exist in any pencil of light they receive, and this pencil may yield up to them a part of the energy it is carrying. This is the phenomenon of absorption.
Professor Lorentz has not contented himself with thus explaining all the mechanism of the phenomena of emission and absorption. He has endeavoured to rediscover, by starting with the fundamental hypothesis, the quantitative laws discovered by thermodynamics. He succeeds in showing that, agreeably to the law of Kirchhoff, the relation between the emitting and the absorbing power must be independent of the special properties of the body under observation, and he thus again meets with the laws of Planck and of Wien: unfortunately the calculation can only be made in the case of great wave-lengths, and grave difficulties exist. Thus it cannot be very clearly explained why, by heating a body, the radiation is displaced towards the side of the short wave-lengths, or, if you will, why a body becomes luminous from the moment its temperature has reached a sufficiently high degree. On the other hand, by calculating the energy of the vibrating particles we are again led to attribute to these particles the same constitution as that of the electrons.
It is in the same way possible, as Professor Lorentz has shown, to give a very satisfactory explanation of the thermo-electric phenomena by supposing that the number of liberated electrons which exist in a given metal at a given temperature has a determined value varying with each metal, and is, in the case of each body, a function of the temperature. The formula obtained, which is based on these hypotheses, agrees completely with the classic results of Clausius and of Lord Kelvin. Finally, if we recollect that the phenomena of electric and calorific conductivity are perfectly interpreted by the hypothesis of electrons, it will no longer be possible to contest the importance of a theory which allows us to group together in one synthesis so many facts of such diverse origins.
If we study the conditions under which a wave excited by an electron’s variations in speed can be transmitted, they again bring us face to face, and generally, with the results pointed out by the ordinary electromagnetic theory. Certain peculiarities, however, are not absolutely the same. Thus the theory of Lorentz, as well as that of Maxwell, leads us to foresee that if an insulating mass be caused to move in a magnetic field normally to its lines of force, a displacement will be produced in this mass analogous to that of which Faraday and Maxwell admitted the existence in the dielectric of a charged condenser. But M.H. Poincaré has pointed out that, according as we adopt one or other of these authors’ points of view, so the value of the displacement differs. This remark is very important, for it may lead to an experiment which would enable us to make a definite choice between the two theories.
To obtain the displacement estimated according to Lorentz, we must multiply the displacement calculated according to Hertz by a factor representing the relation between the difference of the specific inductive capacities of the dielectric and of a vacuum, and the first of these powers. If therefore we take as dielectric the air of which the specific inductive capacity is perceptibly the same as that of a vacuum, the displacement, according to the idea of Lorentz, will be null; while, on the contrary, according to Hertz, it will have a finite value. M. Blondlot has made the experiment. He sent a current of air into a condenser placed in a magnetic field, and was never able to notice the slightest trace of electrification. No displacement, therefore, is effected in the dielectric. The experiment being a negative one, is evidently less convincing than one giving a positive result, but it furnishes a very powerful argument in favour of the theory of Lorentz.
This theory, therefore, appears very seductive, yet it still raises objections on the part of those who oppose to it the principles of ordinary mechanics. If we consider, for instance, a radiation emitted by an electron belonging to one material body, but absorbed by another electron in another body, we perceive immediately that, the propagation not being instantaneous, there can be no compensation between the action and the reaction, which are not simultaneous; and the principle of Newton thus seems to be attacked. In order to preserve its integrity, it has to be admitted that the movements in the two material substances are compensated by that of the ether which separates these substances; but this conception, although in tolerable agreement with the hypothesis that the ether and matter are not of different essence, involves, on a closer examination, suppositions hardly satisfactory as to the nature of movements in the ether.
For a long time physicists have admitted that the ether as a whole must be considered as being immovable and capable of serving, so to speak, as a support for the axes of Galileo, in relation to which axes the principle of inertia is applicable,—or better still, as M. Painlevé has shown, they alone allow us to render obedience to the principle of causality.
But if it were so, we might apparently hope, by experiments in electromagnetism, to obtain absolute motion, and to place in evidence the translation of the earth relatively to the ether. But all the researches attempted by the most ingenious physicists towards this end have always failed, and this tends towards the idea held by many geometricians that these negative results are not due to imperfections in the experiments, but have a deep and general cause. Now Lorentz has endeavoured to find the conditions in which the electromagnetic theory proposed by him might agree with the postulate of the complete impossibility of determining absolute motion. It is necessary, in order to realise this concord, to imagine that a mobile system contracts very slightly in the direction of its translation to a degree proportioned to the square of the ratio of the velocity of transport to that of light. The electrons themselves do not escape this contraction, although the observer, since he participates in the same motion, naturally cannot notice it. Lorentz supposes, besides, that all forces, whatever their origin, are affected by a translation in the same way as electromagnetic forces. M. Langevin and M. H. Poincaré have studied this same question and have noted with precision various delicate consequences of it. The singularity of the hypotheses which we are thus led to construct in no way constitutes an argument against the theory of Lorentz; but it has, we must acknowledge, discouraged some of the more timid partisans of this theory.[48]