Day 3f

Scipione Chiaramonti's Book

Author avatar
by Galileo
31 min read 6439 words
Table of Contents
Simplicio

But what the other side objects to is having to grant that a fixed star must be not only equal to, but much greater than, the sun; for both are still individual bodies located within the stellar orb. And it seems to me much to the purpose that this author inquires, “To what end and use are such vast frames? Produced for the earth, perhaps? That is, for a trifling little dot? And why so remote as to appear very small and be absolutely unable to act in any way upon the earth? To what purpose such a disproportionately large abyss between these and Saturn? All these things are baffling, for they cannot be maintained by probable reasons.”

Simplicio
Salviati
Salviati

From the questions this fellow asks, it seems to me that one may deduce that if only the sky, the stars, and their distances were permitted to keep the sizes and magnitudes which he has believed in up to this point (though he has surely never imagined for them any comprehensible magnitudes), then he would completely understand and be satisfied about the benefits which would proceed from them to the earth, which itself would no longer be such a trifling thing. Nor would these stars any longer be so remote as to seem quite minute, but large enough to be able to act upon the earth. And the distance between them and Saturn would be in good proportion, and he would have Very probable reasons for everything, which I should very much like to have heard. But seeing how confused and contradictory he is in these few words leads me to believe that he is very thrifty with or else hard up for these probable reasons, and that what he calls reasons are more likely fallacies, even shadows of foolish fantasies.

Therefore I ask him whether these celestial bodies really act upon the earth, and whether it was for that purpose that they were made of such-and-such sizes and arranged at such-and-such distances, or whether they have nothing to do with terrestrial affairs? If they have nothing to do with the earth, then it is a great folly for us Terrestrials to want to be arbiters of their sizes and regulators of their local dispositions, we being quite ignorant of all their affairs and interests. But if he says that they do act, and that it is to this end that they are directed, then this amounts to admitting what he denies in another place, and praising what he has just finished condemning when he said that celestial bodies located at such distances from the earth as to appear minuscule could not act upon it in any way. Now, my good man, in the starry sphere, which is already established at whatever distance it is, and which you have just decided is well proportioned for an influence upon terrestrial matters, a multitude of stars do appear quite small, and a hundred times as many are entirely invisible to us–which is to appear smaller than small. Therefore you must now (contradicting yourself) deny their action upon the earth, or else (still contradicting yourself) admit that their appearing small does not detract from their power to act. Or else (and this would be a frank and honest confession) you must grant and freely admit that your judgment about their sizes and distances was folly, not to say presumption or brashness.

Simplicio

There is an obvious contradiction in his saying that the stars of Copernicus, so to speak, could not act upon the earth because they appeared so small, and his not noticing that he had granted action upon the earth to the stars of Ptolemy and his own, these not merely appearing small but being for the most part invisible.

Simplicio
Salviati
Salviati

Why does he say that the stars appear so small?

Is it because that is the way they look to us? Does he not know that this comes about from the instrument which we use in looking at them–that is, our eyes? Or for that matter that by changing instruments we may see them larger and larger, as much as we please? Who knows; perhaps to the earth, which beholds them without eyes, they may appear quite huge and as they really are?

But it is time for us to leave these trifles and get to more important matters. I have already demonstrated two things: first, at what distance the firmament may be placed so that the diameter of the earth’s orbit would make no greater variation in it than that which the terrestrial diameter makes with respect to the sun at its distance therefrom, and I then showed that in order to make a fixed star appear to us as of the size we see, it is not necessary to assume it to be larger than the sun. Now I should like to know whether Tycho or any of his disciples has ever tried to investigate in any way whether any phenomenon is perceived in the stellar sphere by which one might boldly affirm or deny the annual motion of the earth.

Sagredo

I should answer “no” for them, they having had no need to do so, since Copernicus himself says that there is no such variation there; and they, arguing ad hominem, grant this to him. Then on this assumption they show the improbability which follows from it; namely, it would be required to make the sphere so immense that in order for a fixed star to look as large as it does, it would actually have to be so immense in bulk as to exceed the earth’s orbit–a thing which is, as they say, entirely unbelievable. SALV. So it seems to me, and I believe that they argue against the man more in the defense of another man than out of any great desire to get at the truth. And not only do I believe that none of them ever applied himself to making such observations, but I am not even sure that any of them knew what variation ought to be produced in the fixed stars by the annual movement of the earth, if the stellar sphere were not at such a distance that any variation in them would vanish on account of its smallness. For to stop short of such researches and fall back upon the mere dictum of Copernicus may suffice to refute the man, but certainly not to clear up the fact.

Now it might be that there is a variation, but that it Is not looked for; or that because of its smallness, or through lack of accurate instruments, it was not known by Copernicus. (note: Stellar parallax will not be detected until 1837.) This would not be the first thing that he failed to know, either for lack of instruments or from some other deficiency. Yet, grounded upon most solid theories, he affirmed what seemed to be contradicted by things he did not understand. For as already said, without a telescope it cannot be comprehended that Mars does increase sixty times and Venus forty times in one position as against another, and their differences appeared to be much less than the true ones. Yet since that time it has become certain that such variations are, to a hair, Just what the Copernican system required. Hence it would be a good thing to investigate with the greatest possible precision whether one could really observe such a variation as ought to be perceived in the fixed stars, assuming an annual motion of the earth….

Sagredo

SIMP. Really, to be quite frank, I do feel a great repugnance against having to concede the distance of the fixed stars to be so great that the alterations just explained would have to remain entirely imperceptible in them.

SALV. Do not completely despair, Simplicio; perhaps there is yet some way of tempering your difficulties. First of all, that the apparent size of the stars is not seen to alter visibly need not appear entirely improbable to you when you see that men’s estimates in such a matter may be so grossly in error, particularly when looking at brilliant objects. Looking, for example, at a burning torch from a distance of two hundred paces, and then coming closer by three or four yards, do you believe that you yourself would perceive it as larger? For my part, I should certainly not discover this even if I approached by twenty or thirty paces; sometimes I have even happened to see such a light at a distance, and been unable to decide whether it was coming toward me or going away, when in fact it was approaching. Now what of this? If the same approach and retreat of Saturn (I mean double the distance from the sun to us) is almost entirely imperceptible, and if it is scarcely noticeable in Jupiter, what could it amount to in the fixed stars, which I believe you would not hesitate to place twice as far away as Saturn? In Mars, which while approaching us. . .

SIMP. Please do not labor this point, for I am indeed convinced that what you have said about the unaltered appearance of the apparent sizes of the fixed stars may very well be the case. But what shall we say to that other difficulty which arises from no variation at all being seen in their changing aspects?

SALV. Let us say something which will perhaps satisfy you also on this point. Briefly, would you be content if those alterations really were perceived in the stars which seem to you so necessary if the annual motion belongs to the earth?

SIMP. I should indeed be, so far as this particular is concerned.

Salviati
Salviati

I wish you had said that if such a variation were perceived, nothing would remain that could cast doubt upon the earth’s mobility, since no counter could be found to such an event. But even though this may not make itself visible to us, the earth’s mobility Is not thereby excluded, nor its immobility necessarily proved. It is possible, Copernicus declares, that the immense distance of the starry sphere makes such small phenomena unobservable. And as has already been remarked, it may be that up to the present they have not even been looked for, or, if looked for, not sought out in such a way as they need to be; that is, with all necessary precision and minute accuracy. It is hard to achieve this precision, both on account of the imperfection of astronomical instruments, which are subject to much variation, and because of the shortcomings of those who handle them with less care than is required. A cogent reason for putting little faith in such observations is the disagreement we find among astronomers in assigning the places, I shall say not merely of novas and of comets, but of the fixed stars themselves, and even of polar altitudes, about which they disagree most of the time by many minutes.

As a matter of fact, how would you expect anyone to be sure, with a quadrant or sextant that customarily has an arm three or four yards long, that he is not out by two or three minutes in the setting of the perpendicular or the alignment of the alidade? (note: An instrument for angular measurements.) For on such a circumference this will be no more than the thickness of a millet seed. Besides which, it is almost impossible for the instrument to be constructed absolutely accurate and then maintained so. Ptolemy distrusted an armillary instrument constructed by Archimedes himself for determining the entry of the sun into the equinox.

SIMP. But if the instruments are thus suspect, and the observations are so dubious, how can we ever safely accept them and free them from error? I have heard great vauntings of Tycho’s instruments, which were made at enormous expense, and of his remarkable skill in making observations.

Salviati
Salviati

I grant you all this, but neither the one fact nor the other suffices to make us certain in affairs of such importance. I want to have us use instruments far larger than those of Tycho’s; quite precise ones, and made at minimum cost, whose sides will be four, six, twenty, thirty, or fifty miles, so that a degree is a mile wide, a minute is fifty yards, and a second is little less than a yard. In a word, we may have them as large as we please, without their costing us a thing.

Being at a villa of mine near Florence, I plainly observed the arrival of the sun at the summer solstice and its subsequent departure. For one evening at its setting it hid itself behind a cliff in the Pietrapana Mountains, about sixty miles away, leaving only a small shred of itself revealed to the north, the breadth of which was not the hundredth part of its diameter. But the following evening, at the same position of setting, it left a like part of itself showing which was noticeably thinner. This is a conclusive proof that it had commenced to move away from the tropic; yet the sun’s return between the first and second observations surely did not amount to one second of arc along the horizon. Making the observation later with a fine telescope which would multiply the disc of the sun more than a thousandfold turned out to be pleasant and easy.

Now my idea is for us to make our observations of the fixed stars with similar instruments, utilizing some star in which the changes would be conspicuous. These are, as I have already explained, the ones which are farthest from the ecliptic. Among them Vega, a very large star close to the pole of the ecliptic, would be the most convenient when operating in the manner I am about to describe to you, so far as the more northern countries are concerned, though I am going to make use of another star. I have already been looking by myself for a place well adapted for such observations. The place Is an open plain, above which there rises to the north a very prominent mountain, at the summit of which is built a little chapel facing west and east, so that the ridgepole of its roof may cut at right angles the meridian over some house situated in the plain. I wish to affix a beam parallel to that ridgepole and about a yard above it. This done, I shall seek in the plain that place from which one of the stars of the Big Dipper is hidden by this beam which I have placed, just when the star crosses the meridian. Or else, if the beam is not large enough to hide the star, I shall find the place from which the disc of the star is seen to be cut in half by the beam–an effect which can be discerned perfectly by means of a fine telescope. It will be very convenient if there happens to be some house at the place from which this event can be perceived, but if not, then I shall drive a stick firmly into the ground and affix a mark to indicate where the eye is to be placed whenever the observation is to be repeated. I shall make the first of these observations at the summer solstice, in order to continue them from month to month, or whenever I please, until the other solstice.

By means of such observations, the star’s rising or lowering can be perceived no matter how small it may be. And if in the course of these operations any such variation shall happen to become known, how great an achievement will be made in astronomy’ For by this means, besides ascertaining the annual motion, we shall be able to gain a knowledge of the size and distance of that same star.

Sagredo

I thoroughly understand the whole procedure, and the operations seem to me to be so easy and so well adapted to what is wanted, that it may very reasonably be believed that Copernicus himself, or some other astronomer, has actually performed them.

Sagredo

SALV. It seems the other way around to me, for it is improbable that if anyone had tried this he would not have mentioned the result, whichever opinion it turned out to favor. But no one is known to have availed himself of this method, for the above or for any other purpose; and without a fine telescope it could not very well be put into effect.

Sagredo

What you say completely satisfies me. Now, since quite a while remains until the night, if you want me to find any rest then, I hope it will not be too much trouble for you to explain to us those problems which a little while ago you asked us to put off until tomorrow. Please give us back the reprieve which we extended to you, and abandoning all other arguments explain to us how (assuming the motions which Copernicus attributes to the earth, and keeping immovable the sun and the fixed stars) such events may follow as pertain to the elevation and lowering of the sun, the changing of the seasons, and the inequalities of nights and days, in Just the way that is so easily understood to take place in the Ptolemaic system.

Sagredo
Salviati
Salviati

I must not and cannot refuse anything which Sagredo pleads for. The delay that I requested was only to give me time to rearrange in my mind the premises which are useful for a clear and comprehensive explanation of the manner in which these events take place in the Copernican as well as in the Ptolemaic system. Indeed, more easily and simply in the former than in the latter, so that it may be clearly seen that the former hypothesis is as easy for nature to put into effect as it is hard for the intellect to comprehend. Nevertheless I hope, by utilizing explanations other than those resorted to by Copernicus, to make even the learning of it very much less obscure. In order to do this, I shall set forth some assumptions as known and self-evident, as follows:

First. I assume that the earth is a spherical body which rotates about its own axis and poles, and that every point on its surface traces out the circumference of a circle, greater or lesser according as the designated point is more or less distant from the poles. Of these circles, that one is greatest which is traced out by a point equidistant from the poles. All these circles are parallel to one another, and we shall refer to them as parallels.

Second. The earth being spherical in shape and its material being opaque, half its surface is continually lighted and the rest is dark. The boundary which separates the lighted part from the dark being a great circle, we shall call this the boundary circle of light.

Third. When the boundary circle of light passes through the earth’s poles It will cut all the parallels into equal sections, it being a great circle; but, not passing through the poles, it will cut them all into unequal parts except the central circle; this, being also a great circle, will be cut into equal parts in any case.

Fourth. Since the earth turns about its own poles, the length of day and night is determined by the arcs of the parallels cut by the boundary circle of light. The arc which remains in the illuminated hemisphere determines the length of the day, and the remainder that of the night.

These things being set forth, we may wish to draw a diagram for a clearer understanding of what comes next. (Fig. 6) First let us indicate the circumference of a circle, to represent for us the orbit of the earth, described in the plane of the ecliptic. This we may divide by two diameters into four equal parts; Capricorn, Cancer, Libra, and Aries, which shall here represent at the same time the four cardinal points; that is, the two solstices and the two equinoxes. And in the center of this circle, let us denote the sun, O, fixed and immovable

Now with the four points Capricorn, Cancer, Libra, and Aries as centers, we shall draw four equal circles which to us will represent the earth at these four different seasons. The center of the earth travels in the space of a year around the whole circumference Capricorn-Aries-Cancer Libra,) moving from west to east in the order of the signs of the zodiac. It is already evident that when the earth is in Capricorn the sun Will appear in Cancer, the earth moving along the arc from

Capricorn to Aries, the sun will appear to be moving along the arc from Cancer to Libra. In a word, it will run through the signs of the zodiac in their order during the space of a year. So with this first assumption, the apparent annual motion of the sun around the ecliptic is satisfied beyond any argument.

Coming now to the other movement-that is, the diurnal motion of the earth about itself–its poles and axis must be established. These must be understood to be not perpendicularly erect to the plane of the ecliptic; that is, not parallel to the axis of the earth’s orbit, but inclined from right angles about twenty-three and one-half degrees, with the North Pole toward the axis of the earth’s orbit when the center of the earth is at the solstitial point in Capricorn Assuming, then, that the center of the terrestrial globe Is at that point, let us indicate the poles and the axis AB, tilted twenty-three and one-half degrees from the perpendicular on the Capricorn-Cancer diameter, so that the angle A-Capricorn-Cancer amounts to the complement, or sixty-six and one-half degrees, and this inclination must be assumed to be immutable. We shall take the upper pole, A, to be the north, and the other, B, the south.

If the earth is assumed to revolve about its axis AB in twenty-four hours, also from west to east, circles parallel to one another will be described by all points noted on its surface. In this first position of the earth, we shall designate the great circle CD and the two which are twenty-three and one-half degrees from it–EF above, and GN below–and these others at the two extremes, 1K and LM, at a similar distance from the poles A and B; and we could have drawn countless other circles parallel to these five, traced by innumerable points on the earth. Let us now assume that the earth is transported by the annual motion of its center to the other positions already marked, passing to them according to the following laws: That its own axis AB not only does not change its inclination to the plane of the ecliptic, but that it does not vary its direction, either; remaining thus always parallel to itself, it points continually toward the same parts of the universe, or let us say of the firmament. This means that if we imagine the axis to be prolonged, it would describe with its upper end a circle parallel and equal to the earth’ s orbit through Libra, Capricorn, Aries, and Cancer, as the upper base of a cylinder described by itself in its annual motion upon the lower base, Libra-Capricorn-Aries-Cancer. Hence, because of this unchanging tilt, let us draw these other three figures around the centers of Aries, Cancer, and Libra, exactly similar to the one drawn around the center of Capricorn.

Next let us consider the first diagram of the earth. Because of the axis AB being inclined at twenty-three and one-half degrees toward the sun, and since the arc Al is also twenty-three and one-half degrees, the light of the sun illumines the hemisphere of the terrestrial globe exposed to the sun (of which only half is seen here), divided from the dark part by the boundary of light, IM The parallel CD, being a great circle, will be divided into equal parts by this, but all others will be cut into unequal parts because the boundary of light W does not pass through the poles A and B. The parallel IK together with all others described between it and the pole A, will be entirely within the illuminated part, just as on the other hand the opposite ones toward the pole B and contained within the parallel LM will remain in the dark.

Besides this, since the arc Al is equal to the arc FD, and the arc AF is common to IKF and AFD, the latter two are equal, each being one quadrant; and since the whole arc IFM is a semicircle, the arc MF will also be a quadrant and equal to FKI. Hence the sun, 0, in this position of the earth, will be vertical to anyone. at the point F. But through the diurnal revolution around the fixed axis AB, all points on the parallel EF pass through this same point F, and therefore on such a day the sun at midday will be overhead to all inhabitants of the parallel EF; and to them it will seem to describe by its motion that circle which we call the tropic of Cancer.

But to the inhabitants of all parallels above the parallel EF toward the North Pole, A, the sun is below their zenith toward the south. On the other hand, to all inhabitants of the parallels below EF toward the equator CID and the South Pole B, the midday sun is elevated above the zenith toward the North Pole, A.

Next you may see how of all parallels, only the great circle CD is cut into equal parts by the boundary of light IM, the others above and below this all being cut into unequal parts. Of the upper ones, the semidiurnal arcs (which are those in the part of the earth lighted by the sun) are greater than the seminocturnal ones, which remain in the dark. The contrary happens for the remainder which are beneath the great circle CD toward the pole B; of these, the semidiurnal arcs are smaller than the seminocturnal. Also you may see quite plainly that the differences of these arcs go on increasing as the parallels become closer to the poles, until the parallel IK stays entirely in the lighted part, and its inhabitants have a twenty-four-hour day without night. In contrast to this the parallel LM, remaining all in the dark, has a night of twenty-four hours without day.

Next let us proceed to the third diagram of the earth, here placed with its center at the Cancer point, from which the sun would appear to be at the first point of Capricorn. It Is indeed easy to see that as the axis AB has not changed its tilt, but has remained parallel to itself, the appearance and situation of the earth are precisely the same as in the first diagram, except that the hemisphere which in the first was lighted by the sun remains in shadow here, and the one which was previously dark now becomes illuminated. Hence what occurred in the first diagram is now reversed with respect to the differences of days and nights and their relative length or shortness.

The first thing noticed is that where in the first figure, the circle 1K was entirely in the light it is now all in the dark; and LM, which opposite, is now entirely in the light, where it was previously completely in shadow. Of the parallels between the great circle CD and the pole A, the semidiurnal arcs are now smaller than the seminocturnal, which is the opposite of the first; and of the others toward the pole B, the semidiurnal arcs are now longer than the seminocturnal, likewise the opposite of What took place in the other position of the earth. You may now see the sun made vertical to the inhabitants of the tropic GN, and for those of the parallel EF it is depressed southward through the entire arc ECG; that is, forty-seven degrees. It has, in short, gone from one tropic to the other, passing through the equator, being raised and then dropped along the meridian through the said interval of forty-seven degrees. This entire change has its origin not in any dropping or rising of the earth; on the contrary, in its never dropping nor rising, but in generally keeping itself always in the same location with respect to the universe and merely going around the sun, which is situated at the center of this same plane in which the earth moves around it in the annual motion.

Here a remarkable phenomenon must be noticed, which is that just as the preservation of the axis of the earth in the same direction with respect to the universe (or let us say toward the highest fixed stars) makes the sun appear to us to rise and fall by as much as forty-seven degrees without any rise or drop in the fixed stars at all, so if on the contrary the earth’s axis were continually kept at a given inclination toward the sun (or we might say toward the axis of the zodiac), no alteration of ascent or descent would appear to be made by the sun. Thus the inhabitants of a given place would always have the same periods of night and day, and the same kind or season; that is, some people would always have Writer, some always summer, some spring, etc. But on the other hand, the changes in the fixed stars with regard to rising and falling would then appear enormous to us, amounting to this same forty-seven degrees. For an understanding of this let us go back to a consideration of the position of the earth in the first diagram, where the axis AB is seen with its upper pole A tilted toward the sun. In the third figure the same axis has kept the same direction toward the highest sphere by remaining parallel to itself, so the upper pole A no longer tilts toward the sun but tilts away from it, and lies forty-seven degrees from its first position. Thus, in order to reproduce the same inclination of the pole A toward the sun, it would be required (by turning the globe along its circumference ACBD) to take it forty-seven degrees toward E; and any Fixed star observed on the meridian would be raised or lowered by that many degrees. Now let us proceed with an explanation of the rest, and consider the earth placed in the fourth diagram with its center at the first point of Libra, the sun appearing in the beginning of Aries. Thus the earth’s axis, which in the first diagram was assumed to be inclined to the Capricorn-Cancer diameter and hence to be in the same plane as that which cuts the earth’s orbit perpendicularly in the Capricorn-Cancer line, when transferred to the fourth figure (being kept always parallel to itself, as we have said), comes to be in a plane which is likewise vertical to the plane of the earth’s orbit, and parallel to the one which cuts the latter at right angles along the Capricorn-Cancer diameter. Hence the line from the center of the sun to the center of the earth (from 0 to Libra) Will be perpendicular to the axis BA. But this same line from the center of the sun to the center of the earth is always perpendicular also to the boundary circle of light; therefore this same circle will pass through the poles A and B in the fourth figure, and the axis AB will lie in its plane. But the great circle, passing through the poles of the parallels, will divide them all into equal parts, therefore the arcs IK EF, CD, GN, and LM will all be semicircles, and the lighted hemisphere will be this one which faces us and the sun, and the boundary circle of light will be this very circumference ACBD. And when the earth is at this place, the equinox will occur for all its inhabitants.

The same Will happen in the second diagram, where the earth having its lighted hemisphere toward the sun shows to us its dark side with the nocturnal arcs. These are also all semicircles, and consequently also make an equinox. Finally, since the line produced from the center of the sun to the center of the earth is perpendicular to the axis AB, to which likewise the great circle CD among the parallels is perpendicular, the same line O–Libra necessarily passes through the same plane as the parallel CD, cutting its circumference in the center of the daytime arc CD; therefore the sun will be vertical to anyone located in that cut. But all inhabitants of that parallel pass by there, carried by the earth’s rotation, and have the midday sun directly overhead; therefore the sun will appear to all inhabitants of the earth to be tracing out the greatest parallel, called the equatorial circle.

Moreover, the earth being at either of the solstitial points, one of the polar circles IK or LM is entirely in the light and the other in the shadow; but when the earth is at the equinoctial points, half of each of these polar circles is in the light and the balance in the dark. It should not be hard to see how the earth in passing, for example, from Cancer (where the parallel IK is entirely dark) to Leo, a part of the parallel IK toward the point I will commence to enter the light, and the boundary of light IM will begin to retreat toward the poles A and B, cutting the circle ACBD no longer at I and M, but in two other points failing between the endpoints I, A, M, and B, of the arcs IA and MB. Thus the inhabitants of the circle IK begin to enjoy the light, and those of the circle LM to experience the darkness.

See, then, how two simple noncontradictory motions assigned to the earth, performed in periods well suited to their sizes, and also conducted from west to east as in the case of all movable world bodies, supply adequate causes for all the visible phenomena. These phenomena can be reconciled with a fixed earth only by renouncing all the symmetry that is seen among the speeds and sizes of moving bodies, and attributing an inconceivable velocity to an enormous sphere beyond all the others, while lesser spheres move very slowly. Besides, one must make the motion of the former contrary to that of the latter, and to increase the improbability, must have the highest sphere transport all the lower ones opposite to their own inclination. I leave it to your judgment which has the more likelihood in it.

SAGR. For my part, so far as my senses are concerned, there is a great difference between the simplicity and ease of effecting results by the means given in this new arrangement and the multiplicity, confusion, and difficulty found in the ancient and generally accepted one. For if the universe were ordered according to such a multiplicity, one would have to remove from philosophy many axioms commonly adopted by all philosophers. Thus it is said that Nature does not multiply things unnecessarily; that she makes use of the easiest and simplest means for producing her effects; that she does nothing in vain, and the like.

I must confess that I have not heard anything more admirable than this, nor can I believe that the human mind has ever penetrated into subtler speculations. I do not know how it looks to Simplicio.

SIMP. If I must tell you frankly how it looks to me, these appear to me to me some of those geometrical subtleties which Aristotle reprehended in Plato when he accused him of departing from sound philosophy by too much study of geometry. I have known some very great Peripatetic philosophers, and heard them advise their pupils against the study of mathematics as something which makes the intellect sophistical and inept for true philosophizing; a doctrine diametrically opposed to that of Plato, who would admit no one into philosophy who had not first mastered geometry.

Salviati
Salviati

I endorse the policy of these Peripatetics of yours in dissuading their disciples from the study of geometry, since there is no art better suited for the disclosure of their fallacies. You see how different they are from the mathematical philosophers, who much prefer dealing with those who are well informed about the general <–The Third Day 81–> Peripatetic philosophy than with those who lack such information and because of that deficiency are unable to make comparisons between one doctrine and the other.

But setting all this aside, please tell me what absurdities or excessive subtleties make this Copernican arrangement the less plausible so far as you are concerned.

SIMP. As a matter of fact, I did not completely understand it, perhaps because I am not very well versed either in the way the same effects are produced by Ptolemy–I mean these planetary stoppings, retrograde movements, approaches and retreats, lengthenings and shortenings of the day, alterations of the seasons, etc. But passing over the consequences which stem from the basic assumptions, I feel no small difficulties to exist in these assumptions themselves, and if the assumptions fall to the ground then they bring the whole structure into ruin. Now since the whole framework of Copernicus seems to me to be built upon a weak foundation (being supported upon the mobility of the earth), then if this were removed, there would be no room for further argument. And to remove it, Aristotle’s axiom that to a simple body only one simple motion can be natural appears to be sufficient. Here three movements, if not four, are assigned to the earth, a simple body; and all of them are quite different from one another. For besides the straight motion toward the center, which cannot be denied to it as a heavy body, there are ascribed to it a circular motion in a great circle around the sun in one year, and a whirling upon itself every twenty-four hours, and (what is most extreme, and possibly for that reason you have remained silent about this) another whirling about its own center, completed in a year, and opposite to the previously mentioned twenty-four-hour motion. My mind feels a great repugnance to this….

Send us your comments!