New Views On The Constitution Of The Ether And Of Matter
5 minutes • 1029 words
New and valuable information is thus afforded us regarding the properties of the ether, but will this enable us to construct a material representation of this medium which fills the universe, and so to solve a problem which has baffled, as we have seen, the prolonged efforts of our predecessors?
Certain scholars seem to have cherished this hope. Dr. Larmor in particular, as we have seen, has proposed a most ingenious image, but one which is manifestly insufficient.
The present tendency of physicists rather tends to the opposite view; since they consider matter as a very complex object, regarding which we wrongly imagine ourselves to be well informed because we are so much accustomed to it, and its singular properties end by seeming natural to us. But in all probability the ether is, in its objective reality, much more simple, and has a better right to be considered as fundamental.
We cannot therefore, without being very illogical, define the ether by material properties, and it is useless labour, condemned beforehand to sterility, to endeavour to determine it by other qualities than those of which experiment gives us direct and exact knowledge.
The ether is defined when we know, in all its points, and in magnitude and in direction, the two fields, electric and magnetic, which may exist in it.
These 2 fields may vary.
We speak from habit of a movement propagated in the ether, but the phenomenon within the reach of experiment is the propagation of these variations.
Since the electrons, considered as a modification of the ether symmetrically distributed round a point, perfectly counterfeit that inertia which is the fundamental property of matter, it becomes very tempting to suppose that matter itself is composed of a more or less complex assemblage of electrified centres in motion.
This complexity is, in general, very great, as is demonstrated by the examination of the luminous spectra produced by the atoms, and it is precisely because of the compensations produced between the different movements that the essential properties of matter—the law of the conservation of inertia, for example—are not contrary to the hypothesis.
The forces of cohesion thus would be due to the mutual attractions which occur in the electric and magnetic fields produced in the interior of bodies; and it is even conceivable that there may be produced, under the influence of these actions, a tendency to determine orientation, that is to say, that a reason can be seen why matter may be crystallised.[50]
All the experiments effected on the conductivity of gases or metals, and on the radiations of active bodies, have induced us to regard the atom as being constituted by a positively charged centre having practically the same magnitude as the atom itself, round which the electrons gravitate; and it might evidently be supposed that this positive centre itself preserves the fundamental characteristics of matter, and that it is the electrons alone which no longer possess any but electromagnetic mass.
We have but little information concerning these positive particles, though they are met with in an isolated condition, as we have seen, in the canal rays or in the X rays.[51] It has not hitherto been possible to study them so successfully as the electrons themselves; but that their magnitude causes them to produce considerable perturbations in the bodies on which they fall is manifest by the secondary emissions which complicate and mask the primitive phenomenon. There are, however, strong reasons for thinking that these positive centres are not simple. Thus Professor Stark attributes to them, with experiments in proof of his opinion, the emission of the spectra of the rays in Geissler tubes, and the complexity of the spectrum discloses the complexity of the centre. Besides, certain peculiarities in the conductivity of metals cannot be explained without a supposition of this kind. So that the atom, deprived of the cathode corpuscle, would be still liable to decomposition into elements analogous to electrons and positively charged. Consequently nothing prevents us supposing that this centre likewise simulates inertia by its electromagnetic properties, and is but a condition localised in the ether.
However this may be, the edifice thus constructed, being composed of electrons in periodical motion, necessarily grows old. The electrons become subject to accelerations which produce a radiation towards the exterior of the atom; and certain of them may leave the body, while the primitive stability is, in the end, no longer assured, and a new arrangement tends to be formed. Matter thus seems to us to undergo those transformations of which the radio-active bodies have given us such remarkable examples.
We have already had, in fragments, these views on the constitution of matter; a deeper study of the electron thus enables us to take up a position from which we obtain a sharp, clear, and comprehensive grasp of the whole and a glimpse of indefinite horizons.
It would be advantageous, however, in order to strengthen this position, that a few objections which still menace it should be removed. The instability of the electron is not yet sufficiently demonstrated. How is it that its charge does not waste itself away, and what bonds assure the permanence of its constitution?
On the other hand, the phenomena of gravitation remain a mystery. Lorentz has endeavoured to build up a theory in which he explains attraction by supposing that two charges of similar sign repel each other in a slightly less degree than that in which two charges, equal but of contrary sign, attract each other, the difference being, however, according to the calculation, much too small to be directly observed. He has also sought to explain gravitation by connecting it with the pressures which may be produced on bodies by the vibratory movements which form very penetrating rays. Recently M. Sutherland has imagined that attraction is due to the difference of action in the convection currents produced by the positive and negative corpuscles which constitute the atoms of the stars, and are carried along by the astronomical motions. But these hypotheses remain rather vague, and many authors think, like M. Langevin, that gravitation must result from some mode of activity of the ether totally different from the electromagnetic mode.