Superphysics Superphysics
Chapter 9

Cathode Rays And Radioactive Bodies

by Lucien Poincare
36 minutes  • 7554 words
Table of contents

THE CATHODE RAYS

A wire traversed by an electric current is, as has just been explained, the seat of a movement of electrons. If we cut this wire, a flood of electrons, like a current of water which, at the point where a pipe bursts, flows out in abundance, will appear to spring out between the two ends of the break.

If the energy of the electrons is sufficient, these electrons will in fact rush forth and be propagated in the air or in the insulating medium interposed; but the phenomena of the discharge will in general be very complex. We shall here only examine a particularly simple case, viz., that of the cathode rays; and without entering into details, we shall only note the results relating to these rays which furnish valuable arguments in favour of the electronic hypothesis and supply solid materials for the construction of new theories of electricity and matter.

For a long time it was noticed that the phenomena in a Geissler tube changed their aspect considerably, when the gas pressure became very weak, without, however, a complete vacuum being formed. From the cathode there is shot forth normally and in a straight line a flood within the tube, dark but capable of impressing a photographic plate, of developing the fluorescence of various substances (particularly the glass walls of the tube), and of producing calorific and mechanical effects. These are the cathode rays, so named in 1883 by E. Wiedemann, and their name, which was unknown to a great number of physicists till barely twelve years ago, has become popular at the present day.

About 1869, Hittorf made an already very complete study of them and put in evidence their principal properties; but it was the researches of Sir W. Crookes in especial which drew attention to them. The celebrated physicist foresaw that the phenomena which were thus produced in rarefied gases were, in spite of their very great complication, more simple than those presented by matter under the conditions in which it is generally met with.

He devised a celebrated theory no longer admissible in its entirety, because it is not in complete accord with the facts, which was, however, very interesting, and contained, in germ, certain of our present ideas. In the opinion of Crookes, in a tube in which the gas has been rarefied we are in presence of a special state of matter. The number of the gas molecules has become small enough for their independence to be almost absolute, and they are able in this so-called radiant state to traverse long spaces without departing from a straight line. The cathode rays are due to a kind of molecular bombardment of the walls of the tubes, and of the screens which can be introduced into them; and it is the molecules, electrified by their contact with the cathode and then forcibly repelled by electrostatic action, which produce, by their movement and their vis viva, all the phenomena observed. Moreover, these electrified molecules animated with extremely rapid velocities correspond, according to the theory verified in the celebrated experiment of Rowland on convection currents, to a true electric current, and can be deviated by a magnet.

Notwithstanding the success of Crookes’ experiments, many physicists—the Germans especially—did not abandon an hypothesis entirely different from that of radiant matter. They continued to regard the cathode radiation as due to particular radiations of a nature still little known but produced in the luminous ether. This interpretation seemed, indeed, in 1894, destined to triumph definitely through the remarkable discovery of Lenard, a discovery which, in its turn, was to provoke so many others and to bring about consequences of which the importance seems every day more considerable.

Professor Lenard’s fundamental idea was to study the cathode rays under conditions different from those in which they are produced. These rays are born in a very rarefied space, under conditions perfectly determined by Sir W. Crookes; but it was a question whether, when once produced, they would be capable of propagating themselves in other media, such as a gas at ordinary pressure, or even in an absolute vacuum. Experiment alone could answer this question, but there were difficulties in the way of this which seemed almost insurmountable. The rays are stopped by glass even of slight thickness, and how then could the almost vacuous space in which they have to come into existence be separated from the space, absolutely vacuous or filled with gas, into which it was desired to bring them?

The artifice used was suggested to Professor Lenard by an experiment of Hertz. The great physicist had, in fact, shortly before his premature death, taken up this important question of the cathode rays, and his genius left there, as elsewhere, its powerful impress. He had shown that metallic plates of very slight thickness were transparent to the cathode rays; and Professor Lenard succeeded in obtaining plates impermeable to air, but which yet allowed the pencil of cathode rays to pass through them.

Now if we take a Crookes tube with the extremity hermetically closed by a metallic plate with a slit across the diameter of 1 mm. in width, and stop this slit with a sheet of very thin aluminium, it will be immediately noticed that the rays pass through the aluminium and pass outside the tube. They are propagated in air at atmospheric pressure, and they can also penetrate into an absolute vacuum. They therefore can no longer be attributed to radiant matter, and we are led to think that the energy brought into play in this phenomenon must have its seat in the light-bearing ether itself.

But it is a very strange light which is thus subject to magnetic action, which does not obey the principle of equal angles, and for which the most various gases are already disturbed media. According to Crookes it possesses also the singular property of carrying with it electric charges.

This convection of negative electricity by the cathode rays seems quite inexplicable on the hypothesis that the rays are ethereal radiations. Nothing then remained in order to maintain this hypothesis, except to deny the convection, which, besides, was only established by indirect experiments. That the reality of this transport has been placed beyond dispute by means of an extremely elegant experiment which is all the more convincing that it is so very simple, is due to M. Perrin. In the interior of a Crookes tube he collected a pencil of cathode rays in a metal cylinder. According to the elementary principles of electricity the cylinder must become charged with the whole charge, if there be one, brought to it by the rays, and naturally various precautions had to be taken. But the result was very precise, and doubt could no longer exist—the rays were electrified.

It might have been, and indeed was, maintained, some time after this experiment was published, that while the phenomena were complex inside the tube, outside, things might perhaps occur differently. Lenard himself, however, with that absence of even involuntary prejudice common to all great minds, undertook to demonstrate that the opinion he at first held could no longer be accepted, and succeeded in repeating the experiment of M. Perrin on cathode rays in the air and even in vacuo.

On the wrecks of the two contradictory hypotheses thus destroyed, and out of the materials from which they had been built, a theory has been constructed which co-ordinates all the known facts. This theory is furthermore closely allied to the theory of ionisation, and, like this latter, is based on the concept of the electron. Cathode rays are electrons in rapid motion.

The phenomena produced both inside and outside a Crookes tube are, however, generally complex. In Lenard’s first experiments, and in many others effected later when this region of physics was still very little known, a few confusions may be noticed even at the present day.

At the spot where the cathode rays strike the walls of the tube the essentially different X rays appear. These differ from the cathode radiations by being neither electrified nor deviated by a magnet. In their turn these X rays may give birth to the secondary rays of M. Sagnac; and often we find ourselves in presence of effects from these last-named radiations and not from the true cathode rays.

The electrons, when they are propagated in a gas, can ionise the molecules of this gas and unite with the neutral atoms to form negative ions, while positive ions also appear. There are likewise produced, at the expense of the gas still subsisting after rarefication within the tube, positive ions which, attracted by the cathode and reaching it, are not all neutralised by the negative electrons, and can, if the cathode be perforated, pass through it, and if not, pass round it. We have then what are called the canal rays of Goldstein, which are deviated by an electric or magnetic field in a contrary direction to the cathode rays; but, being larger, give weak deviations or may even remain undeviated through losing their charge when passing through the cathode.

It may also be the parts of the walls at a distance from the cathode which send a positive rush to the latter, by a similar mechanism. It may be, again, that in certain regions of the tube cathode rays are met with diffused by some solid object, without having thereby changed their nature. All these complexities have been cleared up by M. Villard, who has published, on these questions, some remarkably ingenious and particularly careful experiments.

M. Villard has also studied the phenomena of the coiling of the rays in a field, as already pointed out by Hittorf and Plücker. When a magnetic field acts on the cathode particle, the latter follows a trajectory, generally helicoidal, which is anticipated by the theory. We here have to do with a question of ballistics, and experiments duly confirm the anticipations of the calculation. Nevertheless, rather singular phenomena appear in the case of certain values of the field, and these phenomena, dimly seen by Plücker and Birkeland, have been the object of experiments by M. Villard. The two faces of the cathode seem to emit rays which are deviated in a direction perpendicular to the lines of force by an electric field, and do not seem to be electrified. M. Villard calls them magneto-cathode rays, and according to M. Fortin these rays may be ordinary cathode rays, but of very slight velocity.

In certain cases the cathode itself may be superficially disaggregated, and extremely tenuous particles detach themselves, which, being carried off at right angles to its surface, may deposit themselves like a very thin film on objects placed in their path. Various physicists, among them M. Houllevigue, have studied this phenomenon, and in the case of pressures between 1/20 and 1/100 of a millimetre, the last-named scholar has obtained mirrors of most metals, a phenomenon he designates by the name of ionoplasty.

But in spite of all these accessory phenomena, which even sometimes conceal those first observed, the existence of the electron in the cathodic flux remains the essential characteristic.

The electron can be apprehended in the cathodic ray by the study of its essential properties; and J.J. Thomson gave great value to the hypothesis by his measurements. At first he meant to determine the speed of the cathode rays by direct experiment, and by observing, in a revolving mirror, the relative displacement of two bands due to the excitement of two fluorescent screens placed at different distances from the cathode. But he soon perceived that the effect of the fluorescence was not instantaneous, and that the lapse of time might form a great source of error, and he then had recourse to indirect methods. It is possible, by a simple calculation, to estimate the deviations produced on the rays by a magnetic and an electric field respectively as a function of the speed of propagation and of the relation of the charge to the material mass of the electron. The measurement of these deviations will then permit this speed and this relation to be ascertained.

Other processes may be used which all give the same two quantities by two suitably chosen measurements. Such are the radius of the curve taken by the trajectory of the pencil in a perpendicular magnetic field and the measure of the fall of potential under which the discharge takes place, or the measure of the total quantity of electricity carried in one second and the measure of the calorific energy which may be given, during the same period, to a thermo-electric junction. The results agree as well as can be expected, having regard to the difficulty of the experiments; the values of the speed agree also with those which Professor Wiechert has obtained by direct measurement.

The speed never depends on the nature of the gas contained in the Crookes tube, but varies with the value of the fall of potential at the cathode. It is of the order of one tenth of the speed of light, and it may rise as high as one third. The cathode particle therefore goes about three thousand times faster than the earth in its orbit. The relation is also invariable, even when the substance of which the cathode is formed is changed or one gas is substituted for another. It is, on the average, a thousand times greater than the corresponding relation in electrolysis. As experiment has shown, in all the circumstances where it has been possible to effect measurements, the equality of the charges carried by all corpuscules, ions, atoms, etc., we ought to consider that the charge of the electron is here, again, that of a univalent ion in electrolysis, and therefore that its mass is only a small fraction of that of the atom of hydrogen, viz., of the order of about a thousandth part. This is the same result as that to which we were led by the study of flames.

The thorough examination of the cathode radiation, then, confirms us in the idea that every material atom can be dissociated and will yield an electron much smaller than itself—and always identical whatever the matter whence it comes,—the rest of the atom remaining charged with a positive quantity equal and contrary to that borne by the electron. In the present case these positive ions are no doubt those that we again meet with in the canal rays. Professor Wien has shown that their mass is really, in fact, of the order of the mass of atoms. Although they are all formed of identical electrons, there may be various cathode rays, because the velocity is not exactly the same for all electrons. Thus is explained the fact that we can separate them and that we can produce a sort of spectrum by the action of the magnet, or, again, as M. Deslandres has shown in a very interesting experiment, by that of an electrostatic field. This also probably explains the phenomena studied by M. Villard, and previously pointed out.

§ 2. RADIOACTIVE SUBSTANCES

Even in ordinary conditions, certain substances called radioactive emit, quite outside any particular reaction, radiations complex indeed, but which pass through fairly thin layers of minerals, impress photographic plates, excite fluorescence, and ionize gases. In these radiations we again find electrons which thus escape spontaneously from radioactive bodies.

It is not necessary to give here a history of the discovery of radium, for every one knows the admirable researches of M. and Madame Curie. But subsequent to these first studies, a great number of facts have accumulated for the last six years, among which some people find themselves a little lost. It may, perhaps, not be useless to indicate the essential results actually obtained.

The researches on radioactive substances have their starting-point in the discovery of the rays of uranium made by M. Becquerel in 1896. As early as 1867 Niepce de St Victor proved that salts of uranium impressed photographic plates in the dark; but at that time the phenomenon could only pass for a singularity attributable to phosphorescence, and the valuable remarks of Niepce fell into oblivion. M. Becquerel established, after some hesitations natural in the face of phenomena which seemed so contrary to accepted ideas, that the radiating property was absolutely independent of phosphorescence, that all the salts of uranium, even the uranous salts which are not phosphorescent, give similar radiant effects, and that these phenomena correspond to a continuous emission of energy, but do not seem to be the result of a storage of energy under the influence of some external radiation. Spontaneous and constant, the radiation is insensible to variations of temperature and light.

The nature of these radiations was not immediately understood, [32] and their properties seemed contradictory. This was because we were not dealing with a single category of rays. But amongst all the effects there is one which constitutes for the radiations taken as a whole, a veritable process for the measurement of radioactivity. This is their ionizing action on gases. A very complete study of the conductivity of air under the influence of rays of uranium has been made by various physicists, particularly by Professor Rutherford, and has shown that the laws of the phenomenon are the same as those of the ionization due to the action of the Röntgen rays.

It was natural to ask one’s self if the property discovered in salts of uranium was peculiar to this body, or if it were not, to a more or less degree, a general property of matter. Madame Curie and M. Schmidt, independently of each other, made systematic researches in order to solve the question; various compounds of nearly all the simple bodies at present known were thus passed in review, and it was established that radioactivity was particularly perceptible in the compounds of uranium and thorium, and that it was an atomic property linked to the matter endowed with it, and following it in all its combinations. In the course of her researches Madame Curie observed that certain pitchblendes (oxide of uranium ore, containing also barium, bismuth, etc.) were four times more active (activity being measured by the phenomenon of the ionization of the air) than metallic uranium. Now, no compound containing any other active metal than uranium or thorium ought to show itself more active than those metals themselves, since the property belongs to their atoms. It seemed, therefore, probable that there existed in pitchblendes some substance yet unknown, in small quantities and more radioactive than uranium.

M. and Madame Curie then commenced those celebrated experiments which brought them to the discovery of radium. Their method of research has been justly compared in originality and importance to the process of spectrum analysis. To isolate a radioactive substance, the first thing is to measure the activity of a certain compound suspected of containing this substance, and this compound is chemically separated. We then again take in hand all the products obtained, and by measuring their activity anew, it is ascertained whether the substance sought for has remained in one of these products, or is divided among them, and if so, in what proportion. The spectroscopic reaction which we may use in the course of this separation is a thousand times less sensitive than observation of the activity by means of the electrometer.

Though the principle on which the operation of the concentration of the radium rests is admirable in its simplicity, its application is nevertheless very laborious. Tons of uranium residues have to be treated in order to obtain a few decigrammes of pure salts of radium. Radium is characterised by a special spectrum, and its atomic weight, as determined by Madame Curie, is 225; it is consequently the higher homologue of barium in one of the groups of Mendeléef. Salts of radium have in general the same chemical properties as the corresponding salts of barium, but are distinguished from them by the differences of solubility which allow of their separation, and by their enormous activity, which is about a hundred thousand times greater than that of uranium.

Radium produces various chemical and some very intense physiological reactions. Its salts are luminous in the dark, but this luminosity, at first very bright, gradually diminishes as the salts get older. We have here to do with a secondary reaction correlative to the production of the emanation, after which radium undergoes the transformations which will be studied later on.

The method of analysis founded by M. and Madame Curie has enabled other bodies presenting sensible radioactivity to be discovered. The alkaline metals appear to possess this property in a slight degree. Recently fallen snow and mineral waters manifest marked action. The phenomenon may often be due, however, to a radioactivity induced by radiations already existing in the atmosphere. But this radioactivity hardly attains the ten-thousandth part of that presented by uranium, or the ten-millionth of that appertaining to radium.

Two other bodies, polonium and actinium, the one characterised by the special nature of the radiations it emits and the other by a particular spectrum, seem likewise to exist in pitchblende. These chemical properties have not yet been perfectly defined; thus M. Debierne, who discovered actinium, has been able to note the active property which seems to belong to it, sometimes in lanthanum, sometimes in neodynium.[33] It is proved that all extremely radioactive bodies are the seat of incessant transformations, and even now we cannot state the conditions under which they present themselves in a strictly determined form.

§ 3. THE RADIATION OF THE RADIOACTIVE BODIES AND THE EMANATION

To acquire exact notions as to the nature of the rays emitted by the radioactive bodies, it was necessary to try to cause magnetic or electric forces to act on them so as to see whether they behaved in the same way as light and the X rays, or whether like the cathode rays they were deviated by a magnetic field. This work was effected by Professor Giesel, then by M. Becquerel, Professor Rutherford, and by many other experimenters after them. All the methods which have already been mentioned in principle have been employed in order to discover whether they were electrified, and, if so, by electricity of what sign, to measure their speed, and to ascertain their degree of penetration.

The general result has been to distinguish three sorts of radiations, designated by the letters alpha, beta, gamma.

The alpha rays are positively charged, and are projected at a speed which may attain the tenth of that of light; M.H. Becquerel has shown by the aid of photography that they are deviated by a magnet, and Professor Rutherford has, on his side, studied this deviation by the electrical method. The relation of the charge to the mass is, in the case of these rays, of the same order as in that of the ions of electrolysis. They may therefore be considered as exactly analogous to the canal rays of Goldstein, and we may attribute them to a material transport of corpuscles of the magnitude of atoms. The relatively considerable size of these corpuscles renders them very absorbable. A flight of a few millimetres in a gas suffices to reduce their number by one-half. They have great ionizing power.

The beta rays are on all points similar to the cathode rays; they are, as M. and Madame Curie have shown, negatively charged, and the charge they carry is always the same. Their size is that of the electrons, and their velocity is generally greater than that of the cathode rays, while it may become almost that of light. They have about a hundred times less ionizing power than the alpha rays.

The gamma rays were discovered by M. Villard.[34] They may be compared to the X rays; like the latter, they are not deviated by the magnetic field, and are also extremely penetrating. A strip of aluminium five millimetres thick will stop the other kinds, but will allow them to pass. On the other hand, their ionizing power is 10,000 times less than that of the alpha rays.

To these radiations there sometimes are added in the course of experiments secondary radiations analogous to those of M. Sagnac, and produced when the alpha, beta, or gamma rays meet various substances. This complication has often led to some errors of observation.

Phosphorescence and fluorescence seem especially to result from the alpha and beta rays, particularly from the alpha rays, to which belongs the most important part of the total energy of the radiation. Sir W. Crookes has invented a curious little apparatus, the spinthariscope, which enables us to examine the phosphorescence of the blende excited by these rays. By means of a magnifying glass, a screen covered with sulphide of zinc is kept under observation, and in front of it is disposed, at a distance of about half a millimetre, a fragment of some salt of radium. We then perceive multitudes of brilliant points on the screen, which appear and at once disappear, producing a scintillating effect. It seems probable that every particle falling on the screen produces by its impact a disturbance in the neighbouring region, and it is this disturbance which the eye perceives as a luminous point. Thus, says Sir W. Crookes, each drop of rain falling on the surface of still water is not perceived as a drop of rain, but by reason of the slight splash which it causes at the moment of impact, and which is manifested by ridges and waves spreading themselves in circles.

The various radioactive substances do not all give radiations of identical constitution. Radium and thorium possess in somewhat large proportions the three kinds of rays, and it is the same with actinium. Polonium contains especially alpha rays and a few gamma rays. [35] In the case of uranium, the alpha rays have extremely slight penetrating power, and cannot even impress photographic plates. But the widest difference between the substances proceeds from the emanation. Radium, in addition to the three groups of rays alpha, beta, and gamma, disengages continuously an extremely subtle emanation, seemingly almost imponderable, but which may be, for many reasons, looked upon as a vapour of which the elastic force is extremely feeble.

M. and Madame Curie discovered as early as 1899 that every substance placed in the neighbourhood of radium, itself acquired a radioactivity which persisted for several hours after the removal of the radium. This induced radioactivity seems to be carried to other bodies by the intermediary of a gas. It goes round obstacles, but there must exist between the radium and the substance a free and continuous space for the activation to take place; it cannot, for instance, do so through a wall of glass.

In the case of compounds of thorium Professor Rutherford discovered a similar phenomenon; since then, various physicists, Professor Soddy, Miss Brooks, Miss Gates, M. Danne, and others, have studied the properties of these emanations.

The substance emanated can neither be weighed nor can its elastic force be ascertained; but its transformations may be followed, as it is luminous, and it is even more certainly characterised by its essential property, i.e. its radioactivity. We also see that it can be decanted like a gas, that it will divide itself between two tubes of different capacity in obedience to the law of Mariotte, and will condense in a refrigerated tube in accordance with the principle of Watt, while it even complies with the law of Gay-Lussac.

The activity of the emanation vanishes quickly, and at the end of four days it has diminished by one-half. If a salt of radium is heated, the emanation becomes more abundant, and the residue, which, however, does not sensibly diminish in weight, will have lost all its radioactivity, and will only recover it by degrees. Professor Rutherford, notwithstanding many different attempts, has been unable to make this emanation enter into any chemical reaction. If it be a gaseous body, it must form part of the argon group, and, like its other members, be perfectly inert.

By studying the spectrum of the gas disengaged by a solution of salt of radium, Sir William Ramsay and Professor Soddy remarked that when the gas is radioactive there are first obtained rays of gases belonging to the argon family, then by degrees, as the activity disappears, the spectrum slowly changes, and finally presents the characteristic aspect of helium.

We know that the existence of this gas was first discovered by spectrum analysis in the sun. Later its presence was noted in our atmosphere, and in a few minerals which happen to be the very ones from which radium has been obtained. It might therefore have been the case that it pre-existed in the gases extracted from radium; but a remarkable experiment by M. Curie and Sir James Dewar seems to show convincingly that this cannot be so. The spectrum of helium never appears at first in the gas proceeding from pure bromide of radium; but it shows itself, on the other hand, very distinctly, after the radioactive transformations undergone by the salt.

All these strange phenomena suggest bold hypotheses, but to construct them with any solidity they must be supported by the greatest possible number of facts. Before admitting a definite explanation of the phenomena which have their seat in the curious substances discovered by them, M. and Madame Curie considered, with a great deal of reason, that they ought first to enrich our knowledge with the exact and precise facts relating to these bodies and to the effects produced by the radiations they emit.

Thus M. Curie particularly set himself to study the manner in which the radioactivity of the emanation is dissipated, and the radioactivity that this emanation can induce on all bodies. The radioactivity of the emanation diminishes in accordance with an exponential law. The constant of time which characterises this decrease is easily and exactly determined, and has a fixed value, independent of the conditions of the experiment as well as of the nature of the gas which is in contact with the radium and becomes charged with the emanation. The regularity of the phenomenon is so great that it can be used to measure time: in 3985 seconds [36] the activity is always reduced one-half.

Radioactivity induced on any body which has been for a long time in presence of a salt of radium disappears more rapidly. The phenomenon appears, moreover, more complex, and the formula which expresses the manner in which the activity diminishes must contain two exponentials. To find it theoretically we have to imagine that the emanation first deposits on the body in question a substance which is destroyed in giving birth to a second, this latter disappearing in its turn by generating a third. The initial and final substances would be radioactive, but the intermediary one, not. If, moreover, the bodies acted on are brought to a temperature of over 700°, they appear to lose by volatilisation certain substances condensed in them, and at the same time their activity disappears.

The other radioactive bodies behave in a similar way. Bodies which contain actinium are particularly rich in emanations. Uranium, on the contrary, has none.[37] This body, nevertheless, is the seat of transformations comparable to those which the study of emanations reveals in radium; Sir W. Crookes has separated from uranium a matter which is now called uranium X. This matter is at first much more active than its parent, but its activity diminishes rapidly, while the ordinary uranium, which at the time of the separation loses its activity, regains it by degrees. In the same way, Professors Rutherford and Soddy have discovered a so-called thorium X to be the stage through which ordinary thorium has to pass in order to produce its emanation. [38]

It is not possible to give a complete table which should, as it were, represent the genealogical tree of the various radioactive substances. Several authors have endeavoured to do so, but in a premature manner; all the affiliations are not at the present time yet perfectly known, and it will no doubt be acknowledged some day that identical states have been described under different names. [39]

§ 4. THE DISAGGREGATION OF MATTER AND ATOMIC ENERGY

In spite of uncertainties which are not yet entirely removed, it cannot be denied that many experiments render it probable that in radioactive bodies we find ourselves witnessing veritable transformations of matter.

Professor Rutherford, Professor Soddy, and several other physicists, have come to regard these phenomena in the following way. A radioactive body is composed of atoms which have little stability, and are able to detach themselves spontaneously from the parent substance, and at the same time to divide themselves into two essential component parts, the negative electron and its residue the positive ion. The first-named constitutes the beta, and the second the alpha rays.

The emanation is certainly composed of alpha ions with a few molecules agglomerated round them. Professor Rutherford has, in fact, demonstrated that the emanation is charged with positive electricity; and this emanation may, in turn, be destroyed by giving birth to new bodies.

After the loss of the atoms which are carried off by the radiation, the remainder of the body acquires new properties, but it may still be radioactive, and again lose atoms. The various stages that we meet with in the evolution of the radioactive substance or of its emanation, correspond to the various degrees of atomic disaggregation. Professors Rutherford and Soddy have described them clearly in the case of uranium and radium. As regards thorium the results are less satisfactory. The evolution should continue until a stable atomic condition is finally reached, which, because of this stability, is no longer radioactive. Thus, for instance, radium would finally be transformed into helium.[40]

It is possible, by considerations analogous to those set forth above in other cases, to arrive at an idea of the total number of particles per second expelled by one gramme of radium; Professor Rutherford in his most recent evaluation finds that this number approaches 2.5 x 1011.[41] By calculating from the atomic weight the number of atoms probably contained in this gramme of radium, and supposing each particle liberated to correspond to the destruction of one atom, it is found that one half of the radium should disappear in 1280 years;[42] and from this we may conceive that it has not yet been possible to discover any sensible loss of weight. Sir W. Ramsay and Professor Soddy attained a like result by endeavouring to estimate the mass of the emanation by the quantity of helium produced.

If radium transforms itself in such a way that its activity does not persist throughout the ages, it loses little by little the provision of energy it had in the beginning, and its properties furnish no valid argument to oppose to the principle of the conservation of energy. To put everything right, we have only to recognise that radium possessed in the potential state at its formation a finite quantity of energy which is consumed little by little. In the same manner, a chemical system composed, for instance, of zinc and sulphuric acid, also contains in the potential state energy which, if we retard the reaction by any suitable arrangement—such as by amalgamating the zinc and by constituting with its elements a battery which we cause to act on a resistance—may be made to exhaust itself as slowly as one may desire.

There can, therefore, be nothing in any way surprising in the fact that a combination which, like the atomic combination of radium, is not stable—since it disaggregates itself,—is capable of spontaneously liberating energy, but what may be a little astonishing, at first sight, is the considerable amount of this energy.

M. Curie has calculated directly, by the aid of the calorimeter, the quantity of energy liberated, measuring it entirely in the form of heat. The disengagement of heat accounted for in a grain of radium is uniform, and amounts to 100 calories per hour. It must therefore be admitted that an atom of radium, in disaggregating itself, liberates 30,000 times more energy than a molecule of hydrogen when the latter combines with an atom of oxygen to form a molecule of water.

We may ask ourselves how the atomic edifice of the active body can be constructed, to contain so great a provision of energy. We will remark that such a question might be asked concerning cases known from the most remote antiquity, like that of the chemical systems, without any satisfactory answer ever being given. This failure surprises no one, for we get used to everything—even to defeat.

When we come to deal with a new problem we have really no right to show ourselves more exacting; yet there are found persons who refuse to admit the hypothesis of the atomic disaggregation of radium because they cannot have set before them a detailed plan of that complex whole known to us as an atom.

The most natural idea is perhaps the one suggested by comparison with those astronomical phenomena where our observation most readily allows us to comprehend the laws of motion. It corresponds likewise to the tendency ever present in the mind of man, to compare the infinitely small with the infinitely great. The atom may be regarded as a sort of solar system in which electrons in considerable numbers gravitate round the sun formed by the positive ion. It may happen that certain of these electrons are no longer retained in their orbit by the electric attraction of the rest of the atom, and may be projected from it like a small planet or comet which escapes towards the stellar spaces. The phenomena of the emission of light compels us to think that the corpuscles revolve round the nucleus with extreme velocities, or at the rate of thousands of billions of evolutions per second. It is easy to conceive from this that, notwithstanding its lightness, an atom thus constituted may possess an enormous energy.[43]

Other authors imagine that the energy of the corpuscles is principally due to the extremely rapid rotations of those elements on their own axes. Lord Kelvin lately drew up on another model the plan of a radioactive atom capable of ejecting an electron with a considerable vis viva. He supposes a spherical atom formed of concentric layers of positive and negative electricity disposed in such a way that its external action is null, and that, nevertheless, the force emanated from the centre may be repellent for certain values when the electron is within it.

The most prudent physicists and those most respectful to established principles may, without any scruples, admit the explanation of the radioactivity of radium by a dislocation of its molecular edifice. The matter of which it is constituted evolves from an admittedly unstable initial state to another stable one. It is, in a way, a slow allotropic transformation which takes place by means of a mechanism regarding which, in short, we have no more information than we have regarding other analogous transformations. The only astonishment we can legitimately feel is derived from the thought that we are suddenly and deeply penetrating to the very heart of things.

But those persons who have a little more hardihood do not easily resist the temptation of forming daring generalisations. Thus it will occur to some that this property, already discovered in many substances where it exists in more or less striking degree, is, with differences of intensity, common to all bodies, and that we are thus confronted by a phenomenon derived from an essential quality of matter. Quite recently, Professor Rutherford has demonstrated in a fine series of experiments that the alpha particles of radium cease to ionize gases when they are made to lose their velocity, but that they do not on that account cease to exist. It may follow that many bodies emit similar particles without being easily perceived to do so; since the electric action, by which this phenomenon of radioactivity is generally manifested, would, in this case, be but very weak.

If we thus believe radioactivity to be an absolutely general phenomenon, we find ourselves face to face with a new problem. The transformation of radioactive bodies can no longer be assimilated to allotropic transformations, since thus no final form could ever be attained, and the disaggregation would continue indefinitely up to the complete dislocation of the atom. [44] The phenomenon might, it is true, have a duration of perhaps thousands of millions of centuries, but this duration is but a minute in the infinity of time, and matters little. Our habits of mind, if we adopt such a conception, will be none the less very deeply disturbed. We shall have to abandon the idea so instinctively dear to us that matter is the most stable thing in the universe, and to admit, on the contrary, that all bodies whatever are a kind of explosive decomposing with extreme slowness. There is in this, whatever may have been said, nothing contrary to any of the principles on which the science of energetics rests; but an hypothesis of this nature carries with it consequences which ought in the highest degree to interest the philosopher, and we all know with what alluring boldness M. Gustave Le Bon has developed all these consequences in his work on the evolution of matter.[45]

There is hardly a physicist who does not at the present day adopt in one shape or another the ballistic hypothesis. All new facts are co-ordinated so happily by it, that it more and more satisfies our minds; but it cannot be asserted that it forces itself on our convictions with irresistible weight. Another point of view appeared more plausible and simple at the outset, when there seemed reason to consider the energy radiated by radioactive bodies as inexhaustible. It was thought that the source of this energy was to be looked for without the atom, and this idea may perfectly well he maintained at the present day.

Radium on this hypothesis must be considered as a transformer borrowing energy from the external medium and returning it in the form of radiation. It is not impossible, even, to admit that the energy which the atom of radium withdraws from the surrounding medium may serve to keep up, not only the heat emitted and its complex radiation, but also the dissociation, supposed to be endothermic, of this atom. Such seems to be the idea of M. Debierne and also of M. Sagnac. It does not seem to accord with the experiments that this borrowed energy can be a part of the heat of the ambient medium; and, indeed, such a phenomenon would be contrary to the principle of Carnot if we wished (though we have seen how disputable is this extension) to extend this principle to the phenomena which are produced in the very bosom of the atom.

We may also address ourselves to a more noble form of energy, and ask ourselves whether we are not, for the first time, in presence of a transformation of gravitational energy. It may be singular, but it is not absurd, to suppose that the unit of mass of radium is not attached to the earth with the same intensity as an inert body. M. Sagnac has commenced some experiments, as yet unpublished, in order to study the laws of the fall of a fragment of radium. They are necessarily very delicate, and the energetic and ingenious physicist has not yet succeeded in finishing them. [46] Let us suppose that he succeeds in demonstrating that the intensity of gravity is less for radium than for the platinum or the copper of which the pendulums used to illustrate the law of Newton are generally made; it would then be possible still to think that the laws of universal attraction are perfectly exact as regards the stars, and that ponderability is really a particular case of universal attraction, while in the case of radioactive bodies part of the gravitational energy is transformed in the course of its evolution and appears in the form of active radiation.

But for this explanation to be admitted, it would evidently need to be supported by very numerous facts. It might, no doubt, appear still more probable that the energy borrowed from the external medium by radium is one of those still unknown to us, but of which a vague instinct causes us to suspect the existence around us. It is indisputable, moreover, that the atmosphere in all directions is furrowed with active radiations; those of radium may be secondary radiations reflected by a kind of resonance phenomenon.

Certain experiments by Professors Elster and Geitel, however, are not favourable to this point of view. If an active body be surrounded by a radioactive envelope, a screen should prevent this body from receiving any impression from outside, and yet there is no diminution apparent in the activity presented by a certain quantity of radium when it is lowered to a depth of 800 metres under ground, in a region containing a notable quantity of pitchblende. These negative results are, on the other hand, so many successes for the partisans of the explanation of radioactivity by atomic energy.

Any Comments? Post them below!