Superphysics Superphysics
Chapter 8

The Conductivity Of Gases And The Ions

by Lucien Poincare
25 minutes  • 5191 words
Table of contents

THE CONDUCTIVITY OF GASES

Two classes of phenomena are today being interpreted with increasing correctness in spite of the few difficulties which have been pointed out.

The hypothesis of the molecular constitution of matter enables us to group together one of these classes, and the hypothesis of the ether leads us to co-ordinate the other.

But these two classes of phenomena cannot be considered independent of each other. Relations evidently exist between matter and the ether, which manifest themselves in many cases accessible to experiment, and the search for these relations appears to be the paramount problem the physicist should set himself. The question has, for a long time, been attacked on various sides, but the recent discoveries in the conductivity of gases, of the radioactive substances, and of the cathode and similar rays, have allowed us of late years to regard it in a new light. Without wishing to set out here in detail facts which for the most part are well known, we will endeavour to group the chief of them round a few essential ideas, and will seek to state precisely the data they afford us for the solution of this grave problem.

It was the study of the conductivity of gases which at the very first furnished the most important information, and allowed us to penetrate more deeply than had till then been possible into the inmost constitution of matter, and thus to, as it were, catch in the act the actions that matter can exercise on the ether, or, reciprocally, those it may receive from it.

It might, perhaps, have been foreseen that such a study would prove remarkably fruitful. The examination of the phenomena of electrolysis had, in fact, led to results of the highest importance on the constitution of liquids, and the gaseous media which presented themselves as particularly simple in all their properties ought, it would seem, to have supplied from the very first a field of investigation easy to work and highly productive.

This, however, was not at all the case. Experimental complications springing up at every step obscured the problem. One generally found one’s self in the presence of violent disruptive discharges with a train of accessory phenomena, due, for instance, to the use of metallic electrodes, and made evident by the complex appearance of aigrettes and effluves; or else one had to deal with heated gases difficult to handle, which were confined in receptacles whose walls played a troublesome part and succeeded in veiling the simplicity of the fundamental facts. Notwithstanding, therefore, the efforts of a great number of seekers, no general idea disengaged itself out of a mass of often contradictory information.

Many physicists, in France particularly, discarded the study of questions which seemed so confused, and it must even be frankly acknowledged that some among them had a really unfounded distrust of certain results which should have been considered proved, but which had the misfortune to be in contradiction with the theories in current use. All the classic ideas relating to electrical phenomena led to the consideration that there existed a perfect symmetry between the two electricities, positive and negative. In the passing of electricity through gases there is manifested, on the contrary, an evident dissymmetry. The anode and the cathode are immediately distinguished in a tube of rarefied gas by their peculiar appearance; and the conductivity does not appear, under certain conditions, to be the same for the two modes of electrification.

It is not devoid of interest to note that Erman, a German scholar, once very celebrated and now generally forgotten, drew attention as early as 1815 to the unipolar conductivity of a flame. His contemporaries, as may be gathered from the perusal of the treatises on physics of that period, attached great importance to this discovery; but, as it was somewhat inconvenient and did not readily fit in with ordinary studies, it was in due course neglected, then considered as insufficiently established, and finally wholly forgotten.

All these somewhat obscure facts, and some others—such as the different action of ultra-violet radiations on positively and negatively charged bodies—are now, on the contrary, about to be co-ordinated, thanks to the modern ideas on the mechanism of conduction; while these ideas will also allow us to interpret the most striking dissymmetry of all, i.e. that revealed by electrolysis itself, a dissymmetry which certainly can not be denied, but to which sufficient attention has not been given.

It is to a German physicist, Giese, that we owe the first notions on the mechanism of the conductivity of gases, as we now conceive it. In two memoirs published in 1882 and 1889, he plainly arrives at the conception that conduction in gases is not due to their molecules, but to certain fragments of them or to ions. Giese was a forerunner, but his ideas could not triumph so long as there were no means of observing conduction in simple circumstances. But this means has now been supplied in the discovery of the X rays. Suppose we pass through some gas at ordinary pressure, such as hydrogen, a pencil of X rays. The gas, which till then has behaved as a perfect insulator,[29] suddenly acquires a remarkable conductivity. If into this hydrogen two metallic electrodes in communication with the two poles of a battery are introduced, a current is set up in very special conditions which remind us, when they are checked by experiments, of the mechanism which allows the passage of electricity in electrolysis, and which is so well represented to us when we picture to ourselves this passage as due to the migration towards the electrodes, under the action of the field, of the two sets of ions produced by the spontaneous division of the molecule within the solution.

Let us therefore recognise with J.J. Thomson and the many physicists who, in his wake, have taken up and developed the idea of Giese, that, under the influence of the X rays, for reasons which will have to be determined later, certain gaseous molecules have become divided into two portions, the one positively and the other negatively electrified, which we will call, by analogy with the kindred phenomenon in electrolysis, by the name of ions. If the gas be then placed in an electric field, produced, for instance, by two metallic plates connected with the two poles of a battery respectively, the positive ions will travel towards the plate connected with the negative pole, and the negative ions in the contrary direction. There is thus produced a current due to the transport to the electrodes of the charges which existed on the ions.

If the gas thus ionised be left to itself, in the absence of any electric field, the ions, yielding to their mutual attraction, must finally meet, combine, and reconstitute a neutral molecule, thus returning to their initial condition. The gas in a short while loses the conductivity which it had acquired; or this is, at least, the phenomenon at ordinary temperatures. But if the temperature is raised, the relative speeds of the ions at the moment of impact may be great enough to render it impossible for the recombination to be produced in its entirety, and part of the conductivity will remain.

Every element of volume rendered a conductor therefore furnishes, in an electric field, equal quantities of positive and negative electricity. If we admit, as mentioned above, that these liberated quantities are borne by ions each bearing an equal charge, the number of these ions will be proportional to the quantity of electricity, and instead of speaking of a quantity of electricity, we could use the equivalent term of number of ions. For the excitement produced by a given pencil of X rays, the number of ions liberated will be fixed. Thus, from a given volume of gas there can only be extracted an equally determinate quantity of electricity.

The conductivity produced is not governed by Ohm’s law. The intensity is not proportional to the electromotive force, and it increases at first as the electromotive force augments; but it approaches asymptotically to a maximum value which corresponds to the number of ions liberated, and can therefore serve as a measure of the power of the excitement. It is this current which is termed the current of saturation.

M. Righi has ably demonstrated that ionised gas does not obey the law of Ohm by an experiment very paradoxical in appearance. He found that, the greater the distance of the two electrode plates from each, the greater may be, within certain limits, the intensity of the current. The fact is very clearly interpreted by the theory of ionisation, since the greater the length of the gaseous column the greater must be the number of ions liberated.

One of the most striking characteristics of ionised gases is that of discharging electrified conductors. This phenomenon is not produced by the departure of the charge that these conductors may possess, but by the advent of opposite charges brought to them by ions which obey the electrostatic attraction and abandon their own electrification when they come in contact with these conductors.

This mode of regarding the phenomena is extremely convenient and eminently suggestive. It may, no doubt, be thought that the image of the ions is not identical with objective reality, but we are compelled to acknowledge that it represents with absolute faithfulness all the details of the phenomena.

Other facts, moreover, will give to this hypothesis a still greater value; we shall even be able, so to speak, to grasp these ions individually, to count them, and to measure their charge.

§ 2. THE CONDENSATION OF WATER-VAPOUR BY IONS

If the pressure of a vapour—that of water, for instance—in the atmosphere reaches the value of the maximum pressure corresponding to the temperature of the experiment, the elementary theory teaches us that the slightest decrease in temperature will induce a condensation; that small drops will form, and the mist will turn into rain.

In reality, matters do not occur in so simple a manner. A more or less considerable delay may take place, and the vapour will remain supersaturated. We easily discover that this phenomenon is due to the intervention of capillary action. On a drop of liquid a surface-tension takes effect which gives rise to a pressure which becomes greater the smaller the diameter of the drop.

Pressure facilitates evaporation, and on more closely examining this reaction we arrive at the conclusion that vapour can never spontaneously condense itself when liquid drops already formed are not present, unless forces of another nature intervene to diminish the effect of the capillary forces. In the most frequent cases, these forces come from the dust which is always in suspension in the air, or which exists in any recipient. Grains of dust act by reason of their hygrometrical power, and form germs round which drops presently form. It is possible to make use, as did M. Coulier as early as 1875, of this phenomenon to carry off the germs of condensation, by producing by expansion in a bottle containing a little water a preliminary mist which purifies the air. In subsequent experiments it will be found almost impossible to produce further condensation of vapour.

But these forces may also be of electrical origin. Von Helmholtz long since showed that electricity exercises an influence on the condensation of the vapour of water, and Mr C.T.R. Wilson, with this view, has made truly quantitative experiments. It was rapidly discovered after the apparition of the X rays that gases that have become conductors, that is, ionised gases, also facilitate the condensation of supersaturated water vapour.

We are thus led by a new road to the belief that electrified centres exist in gases, and that each centre draws to itself the neighbouring molecules of water, as an electrified rod of resin does the light bodies around it. There is produced in this manner round each ion an assemblage of molecules of water which constitute a germ capable of causing the formation of a drop of water out of the condensation of excess vapour in the ambient air. As might be expected, the drops are electrified, and take to themselves the charge of the centres round which they are formed; moreover, as many drops are created as there are ions. Thereafter we have only to count these drops to ascertain the number of ions which existed in the gaseous mass.

To effect this counting, several methods have been used, differing in principle but leading to similar results. It is possible, as Mr C.T.R. Wilson and Professor J.J. Thomson have done, to estimate, on the one hand, the weight of the mist which is produced in determined conditions, and on the other, the average weight of the drops, according to the formula formerly given by Sir G. Stokes, by deducting their diameter from the speed with which this mist falls; or we can, with Professor Lemme, determine the average radius of the drops by an optical process, viz. by measuring the diameter of the first diffraction ring produced when looking through the mist at a point of light.

We thus get to a very high number. There are, for instance, some twenty million ions per centimetre cube when the rays have produced their maximum effect, but high as this figure is, it is still very small compared with the total number of molecules. All conclusions drawn from kinetic theory lead us to think that in the same space there must exist, by the side of a molecule divided into two ions, a thousand millions remaining in a neutral state and intact.

Mr C.T.R. Wilson has remarked that the positive and negative ions do not produce condensation with the same facility. The ions of a contrary sign may be almost completely separated by placing the ionised gas in a suitably disposed field. In the neighbourhood of a negative disk there remain hardly any but positive ions, and against a positive disk none but negative; and in effecting a separation of this kind, it will be noticed that condensation by negative ions is easier than by the positive.

It is, consequently, possible to cause condensation on negative centres only, and to study separately the phenomena produced by the two kinds of ions. It can thus be verified that they really bear charges equal in absolute value, and these charges can even be estimated, since we already know the number of drops. This estimate can be made, for example, by comparing the speed of the fall of a mist in fields of different values, or, as did J.J. Thomson, by measuring the total quantity of electricity liberated throughout the gas.

At the degree of approximation which such experiments imply, we find that the charge of a drop, and consequently the charge borne by an ion, is sensibly 3.4 x 10-10 electrostatic or 1.1 x 10-20 electromagnetic units. This charge is very near that which the study of the phenomena of ordinary electrolysis leads us to attribute to a univalent atom produced by electrolytic dissociation.

Such a coincidence is evidently very striking; but it will not be the only one, for whatever phenomenon be studied it will always appear that the smallest charge we can conceive as isolated is that mentioned. We are, in fact, in presence of a natural unit, or, if you will, of an atom of electricity.

We must, however, guard against the belief that the gaseous ion is identical with the electrolytic ion. Sensible differences between those are immediately apparent, and still greater ones will be discovered on closer examination.

As M. Perrin has shown, the ionisation produced by the X-rays in no way depends on the chemical composition of the gas; and whether we take a volume of gaseous hydrochloric acid or a mixture of hydrogen and chlorine in the same condition, all the results will be identical: and chemical affinities play no part here.

We can also obtain other information regarding ions: we can ascertain, for instance, their velocities, and also get an idea of their order of magnitude.

By treating the speeds possessed by the liberated charges as components of the known speed of a gaseous current, Mr Zeleny measures the mobilities, that is to say, the speeds acquired by the positive and negative charges in a field equal to the electrostatic unit. He has thus found that these mobilities are different, and that they vary, for example, between 400 and 200 centimetres per second for the two charges in dry gases, the positive being less mobile than the negative ions, which suggests the idea that they are of greater mass.[30]

M. Langevin, who has made himself the eloquent apostle of the new doctrines in France, and has done much to make them understood and admitted, has personally undertaken experiments analogous to those of M. Zeleny, but much more complete. He has studied in a very ingenious manner, not only the mobilities, but also the law of recombination which regulates the spontaneous return of the gas to its normal state. He has determined experimentally the relation of the number of recombinations to the number of collisions between two ions of contrary sign, by studying the variation produced by a change in the value of the field, in the quantity of electricity which can be collected in the gas separating two parallel metallic plates, after the passage through it for a very short time of the Röntgen rays emitted during one discharge of a Crookes tube. If the image of the ions is indeed conformable to reality, this relation must evidently always be smaller than unity, and must tend towards this value when the mobility of the ions diminishes, that is to say, when the pressure of the gas increases. The results obtained are in perfect accord with this anticipation.

On the other hand, M. Langevin has succeeded, by following the displacement of the ions between the parallel plates after the ionisation produced by the radiation, in determining the absolute values of the mobilities with great precision, and has thus clearly placed in evidence the irregularity of the mobilities of the positive and negative ions respectively. Their mass can be calculated when we know, through experiments of this kind, the speed of the ions in a given field, and on the other hand—as we can now estimate their electric charge—the force which moves them. They evidently progress more slowly the larger they are; and in the viscous medium constituted by the gas, the displacement is effected at a speed sensibly proportional to the motive power.

At the ordinary temperature these masses are relatively considerable, and are greater for the positive than for the negative ions, that is to say, they are about the order of some ten molecules. The ions, therefore, seem to be formed by an agglomeration of neutral molecules maintained round an electrified centre by electrostatic attraction. If the temperature rises, the thermal agitation will become great enough to prevent the molecules from remaining linked to the centre. By measurements effected on the gases of flames, we arrive at very different values of the masses from those found for ordinary ions, and above all, very different ones for ions of contrary sign. The negative ions have much more considerable velocities than the positive ones. The latter also seem to be of the same size as atoms; and the first-named must, consequently, be considered as very much smaller, and probably about a thousand times less.

Thus, for the first time in science, the idea appears that the atom is not the smallest fraction of matter to be considered. Fragments a thousand times smaller may exist which possess, however, a negative charge. These are the electrons, which other considerations will again bring to our notice.

§ 3. HOW IONS ARE PRODUCED

It is very seldom that a gaseous mass does not contain a few ions. They may have been formed from many causes, for although to give precision to our studies, and to deal with a well ascertained case, I mentioned only ionisation by the X rays in the first instance, I ought not to give the impression that the phenomenon is confined to these rays. It is, on the contrary, very general, and ionisation is just as well produced by the cathode rays, by the radiations emitted by radio-active bodies, by the ultra-violet rays, by heating to a high temperature, by certain chemical actions, and finally by the impact of the ions already existing in neutral molecules.

Of late years these new questions have been the object of a multitude of researches, and if it has not always been possible to avoid some confusion, yet certain general conclusions may be drawn. The ionisation by flames, in particular, is fairly well known. For it to be produced spontaneously, it would appear that there must exist simultaneously a rather high temperature and a chemical action in the gas. According to M. Moreau, the ionisation is very marked when the flame contains the vapour of the salt of an alkali or of an alkaline earth, but much less so when it contains that of other salts. Arrhenius, Mr C.T.R. Wilson, and M. Moreau, have studied all the circumstances of the phenomenon; and it seems indeed that there is a somewhat close analogy between what first occurs in the saline vapours and that which is noted in liquid electrolytes. There should be produced, as soon as a certain temperature is reached, a dissociation of the saline molecule; and, as M. Moreau has shown in a series of very well conducted researches, the ions formed at about 100°C. seem constituted by an electrified centre of the size of a gas molecule, surrounded by some ten layers of other molecules. We are thus dealing with rather large ions, but according to Mr Wilson, this condensation phenomenon does not affect the number of ions produced by dissociation. In proportion as the temperature rises, the molecules condensed round the nucleus disappear, and, as in all other circumstances, the negative ion tends to become an electron, while the positive ion continues the size of an atom.

In other cases, ions are found still larger than those of saline vapours, as, for example, those produced by phosphorus. It has long been known that air in the neighbourhood of phosphorus becomes a conductor, and the fact, pointed out as far back as 1885 by Matteucci, has been well studied by various experimenters, by MM. Elster and Geitel in 1890, for instance. On the other hand, in 1893 Mr Barus established that the approach of a stick of phosphorus brings about the condensation of water vapour, and we really have before us, therefore, in this instance, an ionisation. M. Bloch has succeeded in disentangling the phenomena, which are here very complex, and in showing that the ions produced are of considerable dimensions; for their speed in the same conditions is on the average a thousand times less than that of ions due to the X rays. M. Bloch has established also that the conductivity of recently-prepared gases, already studied by several authors, was analogous to that which is produced by phosphorus, and that it is intimately connected with the presence of the very tenuous solid or liquid dust which these gases carry with them, while the ions are of the same order of magnitude. These large ions exist, moreover, in small quantities in the atmosphere; and M. Langevin lately succeeded in revealing their presence.

It may happen, and this not without singularly complicating matters, that the ions which were in the midst of material molecules produce, as the result of collisions, new divisions in these last. Other ions are thus born, and this production is in part compensated for by recombinations between ions of opposite signs. The impacts will be more active in the event of the gas being placed in a field of force and of the pressure being slight, the speed attained being then greater and allowing the active force to reach a high value. The energy necessary for the production of an ion is, in fact, according to Professor Rutherford and Professor Stark, something considerable, and it much exceeds the analogous force in electrolytic decomposition.

It is therefore in tubes of rarefied gas that this ionisation by impact will be particularly felt. This gives us the reason for the aspect presented by Geissler tubes. Generally, in the case of discharges, new ions produced by the molecules struck come to add themselves to the electrons produced, as will be seen, by the cathode. A full discussion has led to the interpretation of all the known facts, and to our understanding, for instance, why there exist bright or dark spaces in certain regions of the tube. M. Pellat, in particular, has given some very fine examples of this concordance between the theory and the facts he has skilfully observed.

In all the circumstances, then, in which ions appear, their formation has doubtless been provoked by a mechanism analogous to that of the shock. The X rays, if they are attributable to sudden variations in the ether—that is to say, a variation of the two vectors of Hertz—themselves produce within the atom a kind of electric impulse which breaks it into two electrified fragments; i.e. the positive centre, the size of the molecule itself, and the negative centre, constituted by an electron a thousand times smaller. Round these two centres, at the ordinary temperature, are agglomerated by attraction other molecules, and in this manner the ions whose properties have just been studied are formed.

§ 4. ELECTRONS IN METALS

The success of the ionic hypothesis as an interpretation of the conductivity of electrolytes and gases has suggested the desire to try if a similar hypothesis can represent the ordinary conductivity of metals. We are thus led to conceptions which at first sight seem audacious because they are contrary to our habits of mind. They must not, however, be rejected on that account. Electrolytic dissociation at first certainly appeared at least as strange; yet it has ended by forcing itself upon us, and we could, at the present day, hardly dispense with the image it presents to us.

The idea that the conductivity of metals is not essentially different from that of electrolytic liquids or gases, in the sense that the passage of the current is connected with the transport of small electrified particles, is already of old date. It was enunciated by W. Weber, and afterwards developed by Giese, but has only obtained its true scope through the effect of recent discoveries. It was the researches of Riecke, later, of Drude, and, above all, those of J.J. Thomson, which have allowed it to assume an acceptable form. All these attempts are connected however with the general theory of Lorentz, which we will examine later.

It will be admitted that metallic atoms can, like the saline molecule in a solution, partially dissociate themselves. Electrons, very much smaller than atoms, can move through the structure, considerable to them, which is constituted by the atom from which they have just been detached. They may be compared to the molecules of a gas which is enclosed in a porous body. In ordinary conditions, notwithstanding the great speed with which they are animated, they are unable to travel long distances, because they quickly find their road barred by a material atom. They have to undergo innumerable impacts, which throw them first in one direction and then in another. The passage of a current is a sort of flow of these electrons in a determined direction. This electric flow brings, however, no modification to the material medium traversed, since every electron which disappears at any point is replaced by another which appears at once, and in all metals the electrons are identical.

This hypothesis leads us to anticipate certain facts which experience confirms. Thus J.J. Thomson shows that if, in certain conditions, a conductor is placed in a magnetic field, the ions have to describe an epicycloid, and their journey is thus lengthened, while the electric resistance must increase. If the field is in the direction of the displacement, they describe helices round the lines of force and the resistance is again augmented, but in different proportions. Various experimenters have noted phenomena of this kind in different substances.

For a long time it has been noticed that a relation exists between the calorific and the electric conductivity; the relation of these two conductivities is sensibly the same for all metals. The modern theory tends to show simply that it must indeed be so. Calorific conductivity is due, in fact, to an exchange of electrons between the hot and the cold regions, the heated electrons having the greater velocity, and consequently the more considerable energy. The calorific exchanges then obey laws similar to those which govern electric exchanges; and calculation even leads to the exact values which the measurements have given. [31]

In the same way Professor Hesehus has explained how contact electrification is produced, by the tendency of bodies to equalise their superficial properties by means of a transport of electrons, and Mr Jeans has shown that we should discover the existence of the well-known laws of distribution over conducting bodies in electrostatic equilibrium. A metal can, in fact, be electrified, that is to say, may possess an excess of positive or negative electrons which cannot easily leave it in ordinary conditions. To cause them to do so would need an appreciable amount of work, on account of the enormous difference of the specific inductive capacities of the metal and of the insulating medium in which it is plunged.

Electrons, however, which, on arriving at the surface of the metal, possessed a kinetic energy superior to this work, might be shot forth and would be disengaged as a vapour escapes from a liquid. Now, the number of these rapid electrons, at first very slight, increases, according to the kinetic theory, when the temperature rises, and therefore we must reckon that a wire, on being heated, gives out electrons, that is to say, loses negative electricity and sends into the surrounding media electrified centres capable of producing the phenomena of ionisation. Edison, in 1884, showed that from the filament of an incandescent lamp there escaped negative electric charges. Since then, Richardson and J.J. Thomson have examined analogous phenomena. This emission is a very general phenomenon which, no doubt, plays a considerable part in cosmic physics. Professor Arrhenius explains, for instance, the polar auroras by the action of similar corpuscules emitted by the sun.

In other phenomena we seem indeed to be confronted by an emission, not of negative electrons, but of positive ions. Thus, when a wire is heated, not in vacuo, but in a gas, this wire begins to electrify neighbouring bodies positively. J.J. Thomson has measured the mass of these positive ions and finds it considerable, i.e. about 150 times that of an atom of hydrogen. Some are even larger, and constitute almost a real grain of dust. We here doubtless meet with the phenomena of disaggregation undergone by metals at a red heat.

Any Comments? Post them below!