The Various States of Matter
8 minutes • 1632 words
Table of contents
THE STATICS OF FLUIDS
The division of bodies into solid, liquid, and gas are very important in daily life. However, it has long since lost their absolute value from the scientific point of view.
The antiquated researches of Andrews confirmed the ideas of Cagniard de la Tour.
- It established the continuity of the liquid and gaseous states.
This led to the statics of fluids, which examines the relations between:
- pressure
- volume
- temperature of bodies.
Gases and liquids are called fluids.
Thermodynamics has led to numerical relations between the various coefficients.
Atomic hypotheses have led to the establishment of one capital relation, the characteristic equation of fluids.
On the other hand, experiment in which the progress made in the art of measurement has been utilized, has furnished the most valuable information on all the laws of compressibility and dilatation.
The classical work of Andrews was not very wide.
- He did not go much beyond pressures close to the normal and ordinary temperatures.
Of late years several very interesting and peculiar cases have been examined by MM. Cailletet, Mathias, Batelli, Leduc, P. Chappuis, and other physicists.
Sir W. Ramsay and Mr S. Young have made known the isothermal diagrams[6] of a certain number of liquid bodies at the ordinary temperature.
They have thus been able, while keeping to somewhat restricted limits of temperature and pressure, to touch upon the most important questions, since they found themselves in the region of the saturation curve and of the critical point.
But the most complete and systematic body of researches is due to M. Amagat, who undertook the study of a certain number of bodies, some liquid and some gaseous, extending the scope of his experiments so as to embrace the different phases of the phenomena and to compare together, not only the results relating to the same bodies, but also those concerning different bodies which happen to be in the same conditions of temperature and pressure, but in very different conditions as regards their critical points.
From the experimental point of view, M. Amagat has been able, with extreme skill, to conquer the most serious difficulties. He has managed to measure with precision pressures amounting to 3000 atmospheres, and also the very small volumes then occupied by the fluid mass under consideration. This last measurement, which necessitates numerous corrections, is the most delicate part of the operation. These researches have dealt with a certain number of different bodies.
Those relating to carbonic acid and ethylene take in the critical point. Others, on hydrogen and nitrogen, for instance, are very extended. Others, again, such as the study of the compressibility of water, have a special interest, on account of the peculiar properties of this substance. M. Amagat, by a very concise discussion of the experiments, has also been able to definitely establish the laws of compressibility and dilatation of fluids under constant pressure, and to determine the value of the various coefficients as well as their variations.
It should be possible to condense all these results into a single formula representing the volume, the temperature, and the pressure. Rankin and, subsequently, Recknagel, and then Hirn, formerly proposed formulas of that kind; but the most famous, the one which first appeared to contain in a satisfactory manner all the facts which experiments brought to light and led to the production of many others, was the celebrated equation of Van der Waals.
Professor Van der Waals arrived at this relation by relying upon considerations derived from the kinetic theory of gases.
If we keep to the simple idea at the bottom of this theory, we at once demonstrate that the gas ought to obey the laws of Mariotte and of Gay-Lussac, so that the characteristic equation would be obtained by the statement that the product of the number which is the measure of the volume by that which is the measure of the pressure is equal to a constant coefficient multiplied by the degree of the absolute temperature. But to get at this result we neglect two important factors.
We do not take into account, in fact, the attraction which the molecules must exercise on each other. Now, this attraction, which is never absolutely non-existent, may become considerable when the molecules are drawn closer together; that is to say, when the compressed gaseous mass occupies a more and more restricted volume.
On the other hand, we assimilate the molecules, as a first approximation, to material points without dimensions; in the evaluation of the path traversed by each molecule no notice is taken of the fact that, at the moment of the shock, their centres of gravity are still separated by a distance equal to twice the radius of the molecule.
M. Van der Waals has sought out the modifications which must be introduced into the simple characteristic equation to bring it nearer to reality.
He extends to the case of gases the considerations by which Laplace, in his famous theory of capillarity, reduced the effect of the molecular attraction to a perpendicular pressure exercised on the surface of a liquid.
This leads him to add to the external pressure, that due to the reciprocal attractions of the gaseous particles.
On the other hand, when we attribute finite dimensions to these particles, we must give a higher value to the number of shocks produced in a given time, since the effect of these dimensions is to diminish the mean path they traverse in the time which elapses between two consecutive shocks.
The calculation thus pursued leads to our adding to the pressure in the simple equation a term which is designated the internal pressure, and which is the quotient of a constant by the square of the volume; also to our deducting from the volume a constant which is the quadruple of the total and invariable volume which the gaseous molecules would occupy did they touch one another.
The experiments fit in fairly well with the formula of Van der Waals, but considerable discrepancies occur when we extend its limits, particularly when the pressures throughout a rather wider interval are considered; so that other and rather more complex formulas, on which there is no advantage in dwelling, have been proposed, and, in certain cases, better represent the facts.
But the most remarkable result of M. Van der Waals’ calculations is the discovery of corresponding states. For a long time physicists spoke of bodies taken in a comparable state.
Dalton, for example, pointed out that liquids have vapour-pressures equal to the temperatures equally distant from their boiling-point; but that if, in this particular property, liquids were comparable under these conditions of temperature, as regards other properties the parallelism was no longer to be verified. No general rule was found until M. Van der Waals first enunciated a primary law, viz., that if the pressure, the volume, and the temperature are estimated by taking as units the critical quantities, the constants special to each body disappear in the characteristic equation, which thus becomes the same for all fluids.
The words corresponding states thus take a perfectly precise signification. Corresponding states are those for which the numerical values of the pressure, volume, and temperature, expressed by taking as units the values corresponding to the critical point, are equal; and, in corresponding states any two fluids have exactly the same properties.
M. Natanson, and subsequently P. Curie and M. Meslin, have shown by various considerations that the same result may be arrived at by choosing units which correspond to any corresponding states; it has also been shown that the theorem of corresponding states in no way implies the exactitude of Van der Waals’ formula. In reality, this is simply due to the fact that the characteristic equation only contains three constants.
The philosophical importance and the practical interest of the discovery nevertheless remain considerable. As was to be expected, numbers of experimenters have sought whether these consequences are duly verified in reality. M. Amagat, particularly, has made use for this purpose of a most original and simple method. He remarks that, in all its generality, the law may be translated thus: If the isothermal diagrams of two substances be drawn to the same scale, taking as unit of volume and of pressure the values of the critical constants, the two diagrams should coincide; that is to say, their superposition should present the aspect of one diagram appertaining to a single substance.
Further, if we possess the diagrams of two bodies drawn to any scales and referable to any units whatever, as the changes of units mean changes in the scale of the axes, we ought to make one of the diagrams similar to the other by lengthening or shortening it in the direction of one of the axes. M. Amagat then photographs two isothermal diagrams, leaving one fixed, but arranging the other so that it may be free to turn round each axis of the co-ordinates; and by projecting, by means of a magic lantern, the second on the first, he arrives in certain cases at an almost complete coincidence.
This mechanical means of proof thus dispenses with laborious calculations, but its sensibility is unequally distributed over the different regions of the diagram. M. Raveau has pointed out an equally simple way of verifying the law, by remarking that if the logarithms of the pressure and volume are taken as co-ordinates, the co-ordinates of two corresponding points differ by two constant quantities, and the corresponding curves are identical.
From these comparisons, and from other important researches, among which should be particularly mentioned those of Mr S. Young and M. Mathias, it results that the laws of corresponding states have not, unfortunately, the degree of generality which we at first attributed to them, but that they are satisfactory when applied to certain groups of bodies.[7]