Superphysics Superphysics
Part 3

The Nature of Gravity

December 2, 2024 24 minutes  • 5029 words

The nature of gravity had dawned on him.

Gravity does not vary in the little change of distance from the earth’s centre. But at the distance of the moon does its force reduce?

The conjecture appeared most probable.

In order to estimate that reduction in gravity, he considered that if the moon is retained in her orbit by the force of gravity, the primary planets must also be carried round the sun by it.

By comparing the periods of the several planets with their distances from the sun, he found that, if they were held in their courses by any power like gravity, its strength must decrease in the duplicate proportion of the in crease of distance.

In forming this conclusion, he supposed the planets to move in perfect circles, concentric to the sun.

Was this the law of the moon’s motion?

Was such a force, emanating from the earth and directed to the moon, sufficient, when diminished as the square of the distance, to retain her in her orbit?

To ascertain this master-fact, he compared:

  • the space through which heavy bodies fall, in a second of time, from the earth’s surface, and
  • the space through which the moon falls to the earth, in the same time, while revolving in a circular orbit.

He used the common estimate of 60 miles to a degree of latitude as then in use among geographers and navigators.

The result of his calculations did not answer his expectations.

Hence, he concluded that some other cause, beyond the reach of observation—analogous to the vortices of Descartes—joined its action to that of the power of gravity on the moon.

These rapid marches in the career of discovery, combined with the youth of Newton, seem to evince a penetration the most lively, and an invention the most exuberant.

But in him there was a conjunction of influences as extraordinary as fortunate. Study, unbroken, persevering and profound carried on its informing and disciplining work upon a genius, natively the greatest, and rendered freest in its movements, and clearest in its vision, through the untrammelling and enlightening power of religion.

And, in this happy concurrence, are to be sought the elements of those amazing abilities, which, grasping, with equal facility, the minute and the stupendous, brought these successively to light, and caused science to make them her own.

In 1667, Newton was made a Junior Fellow. In the year following, he took his degree of Master of Arts, and was appointed to a Senior Fellowship.

On his return to Cambridge, in 1668, he resumed his optical labours. Having thought of a delicate method of polishing metal, he proceeded to the construction of his newly projected reflecting telescope; a small specimen of which he actually made with his own hands.

It was six inches long; and magnified about 40 times;—a power greater than a refracting instrument of six feet tube could exert with distinctness. Jupiter, with his four satellites, and the horns, or moon-like phases of Venus were plainly visible through it.

This was the first reflecting telescope ever executed and directed to the heavens.

He gave an account of it, in a letter to a friend, dated February 23d, 1668-9—a letter which is also remarkable for containing the first allusion to his discoveries “concerning the nature of light.”

Encouraged by the success of his first experiment, he again executed with his own hands, not long afterward, a second and superior instrument of the same kind.

The existence of this having come to the knowledge of the Royal Society of London, in 1671, they requested it of Newton for examination. He accordingly sent it to them. It excited great admiration; it was shown to the king; a drawing and description of it was sent to Paris; and the telescope itself was carefully preserved in the Library of the Society.

Newton lived to see his invention in public use, and of eminent service in the cause of science.

In the spring of 1669, he wrote to his friend Francis Aston, Esq., then about setting out on his travels, a letter of advice and directions, it was dated May 18th, and is interesting as exhibiting some of the prominent features in Newton’s character.

Since in your letter you give me so much liberty of spending my judgment about what may be to your advantage in travelling, I shall do it more freely than perhaps otherwise would have been decent. First, then, I will lay down some general rules, most of which, I believe, you have considered already; but if any of them be new to you, they may excuse the rest; if none at all, yet is my punishment more in writing than yours in reading.

“When you come into any fresh company.

  1. Observe their humours.

  2. Suit your own carriage thereto, by which insinuation you will make their converse more free and open.

  3. Let your discourse be more in queries and doubtings than peremptory assertions or disputings, it being the design of travellers to learn, not to teach.

Besides, it will persuade your acquaintance that you have the greater esteem of them, and so make them more ready to communicate what they know to you; whereas nothing sooner occasions disrespect and quarrels than peremptoriness. You will find little or no advantage in seeming wiser or much more ignorant than your company.

  1. Seldom discommend any thing though never so bad, or do it but moderately, lest you be unexpectedly forced to an unhandsome retraction.

It is safer to commend any thing more than it deserves, than to discommend a thing so much as it deserves; for commendations meet not so often with oppositions, or, at least, are not usually so ill resented by men that think otherwise, as discommendations; and you will insinuate into men’s favour by nothing sooner than seeming to approve and commend what they like; but beware of doing it by comparison.

  1. If you be affronted, it is better, in a foreign country, to pass it by in silence, and with a jest, though with some dishonour, than to endeavour revenge; for, in the first case, your credit’s ne’er the worse when you return into England, or come into other company that have not heard of the quarrel.

But, in the second case, you may bear the marks of the quarrel while you live, if you outlive it at all. But, if you find yourself unavoidably engaged, ’tis best, I think, if you can command your passion and language, to keep them pretty evenly at some certain moderate pitch, not much heightening them to exasperate your adversary, or provoke his friends, nor letting them grow overmuch dejected to make him insult. In a word, if you can keep reason above passion, that and watchfulness will be your best defendants. To which purpose you may consider, that, though such excuses as this—He provok’t me so much I could not forbear—may pass among friends, yet amongst strangers they are insignificant, and only argue a traveller’s weakness.

“To these I may add some general heads for inquiries or observations, such as at present I can think on. As,

  1. To observe the policies, wealth, and state affairs of nations, so far as a solitary traveller may conveniently do.

  2. Their impositions upon all sorts of people, trades, or commodities, that are remarkable.

  3. Their laws and customs, how far they differ from ours.

  4. Their trades and arts wherein they excel or come short of us in England.

  5. Such fortifications as you shall meet with, their fashion, strength, and advantages for defence, and other such military affairs as are considerable

  6. The power and respect be longing to their degrees of nobility or magistracy.

  7. It will not be time misspent to make a catalogue of the names and excellencies of those men that are most wise, learned, or esteemed in any nation.

  8. Observe the mechanism and manner of guiding ships.

  9. Observe the products of Nature in several places, especially in mines, with the circumstances of mining and of extracting metals or minerals out of their ore, and of refining them; and if you meet with any transmutations out of their own species into another (as out of iron into copper, out of any metal into quick silver, out of one salt into another, or into an insipid body, &c.), those, above all, will be worth your noting, being the most luciferous, and many times lucriferous experiments, too, in philosophy.

  10. The prices of diet and other things.

  11. The staple commodities of places

These generals might assist you in drawing up a model to regulate your travels by.

As for particulars, these that follow are all that I can now think of, viz.; whether at Schemnitium, in Hungary (where there are mines of gold, copper, iron, vitriol, antimony, &c.). they change iron into copper by dissolving it in a vitriolate water, which they find in cavities of rocks in the mines, and then melting the slimy solution in a strong fire, which in the cooling proves copper.

The like is said to be done in other places, which I cannot now remember; perhaps, too, it may be done in Italy.

20-30 years ago a certain vitriol came from there (called Roman vitriol), but of a nobler virtue. This vitriol is no longer available because, perhaps, they make a greater gain by some such trick as turning iron into copper with it than by selling it.

  1. Whether, in Hungary, Sclavonia, Bohemia, near the town Eila, or at the mountains of Bohemia near Silesia, there be rivers whose waters are impregnated with gold; perhaps, the gold being dissolved by some corrosive water like aqua regis, and the solution carried along with the stream, that runs through the mines.

Whether the practice of laying mercury in the rivers, till it be tinged with gold, and then straining the mercury through leather, that the gold may stay behind, be a secret yet, or openly practised.

  1. There is newly contrived, in Holland, a mill to grind glasses plane withal, and I think polishing them too; perhaps it will be worth the while to see it.

  2. There is in Holland one—Borry, who some years since was imprisoned by the Pope, to have extorted from him secrets (as I am told) of great worth, both as to medicine and profit, but he escaped into Holland, where they have granted him a guard.

I think he usually goes clothed in green. Pray inquire what you can of him, and whether his ingenuity be any profit to the Dutch. You may inform yourself whether the Dutch have any tricks to keep their ships from being all worm-eaten in their voyages to the Indies. Whether pendulum clocks do any service in finding out the longitude, &c.

It was not till June, 1669, that Newton made known his Method of Fluxions.

He then communicated the work which he had composed upon the subject, and entitled, Analysis per Equationes numero terminorum Infinitas, to his friend Dr. Barrow.

The latter, in a letter dated 20th of the same month, mentioned it to Mr. Collins, and transmitted it to him, on the 31st of July thereafter.

Collins greatly approved of the work; took a copy of it; and sent the original back to Dr. Barrow. During the same and the two following years, Mr. Collins, by his extensive correspondence, spread the knowledge of this discovery among the mathematicians in England, Scotland, France, Holland and Italy.

Dr. Barrow, having resolved to devote himself to Theology, resigned the Lucasian Professorship of Mathematics, in 1669, in favour of Newton, who accordingly received the appointment to the vacant chair.

During the years 1669, 1670, and 1671, our author, as such Professor, delivered a course of Optical Lectures.

Though these contained his principal discoveries relative to the different refrangibility of light, yet the discoveries themselves did not be come publicly known, it seems, till he communicated them to the Royal Society, a few weeks after being elected a member thereof, in the spring of 1671-2.

He now rose rapidly in reputation, and was soon regarded as foremost among the philosophers of the age. His paper on light excited the deepest interest in the Royal Society, who manifested an anxious solicitude to secure the author from the “arrogations of others,” and proposed to publish his discourse in the monthly numbers in which the Transactions were given to the world.

Newton willingly accepted of the proposal for publication. He gave them also, at this time, the results of some further experiments in the decomposition and re-composition of light:—that the same degree of refrangibility always belonged to the same colour, and the same colour to the same degree of refrangibility: that the seven different colours of the spectrum were original, or simple, and that whiteness, or white light was a compound of all these seven colours.

The publication of his new doctrines on light soon called forth violent opposition as to their soundness. Hooke and Huygens—men eminent for ability and learning—were the most conspicuous of the assailants.

Though Newton effectually silenced all his adversaries, yet he felt the triumph of little gain in comparison with the loss his tranquillity had sustained. He subsequently remarked in allusion to this controversy—and to one with whom he was destined to have a longer and a bitterer conflict—“I was so persecuted with discussions arising from the publication of my theory of light, that I blamed my own imprudence for parting with so substantial a blessing as my quiet to run after a shadow.

In a communication to Mr. Oldenburg, Secretary of the Royal Society, in 1672, our author stated many valuable suggestions relative to the construction of Reflecting Microscopes which he considered even more capable of improvement than telescopes. He also contemplated, about the same time, an edition of Kinckhuysen’s Algebra, with notes and additions; partially arranging, as an introduction to the work, a treatise, entitled, A Method of Fluxions; but he finally abandoned the design. This treatise, however, he resolved, or rather consented, at a late period of his life, to put forth separately; and the plan would probably have been carried into execution had not his death intervened. It was translated into English, and published in 1736 by John Colson, Professor of Mathematics in Cambridge.

Newton, it is thought, made his discoveries concerning the Inflection and Diffraction of light before 1674. The phenomena of the inflection of light had been first discovered more than ten years before by Grimaldi. And Newton began by repeating one of the experiments of the learned Jesuit—admitting a beam of the sun’s light through a small pin hole into a dark chamber: the light diverged from the aperture in the form of cone, and the shadows of all bodies placed in this light were larger than might have been expected, and surrounded with three coloured fringes, the nearest being widest, and the most remote the narrowest. Newton, advancing upon this experiment, took exact measures of the diameter of the shadow of a human hair, and of the breadth of the fringes, at different distances behind it, and discovered that these diameters and breadths were not proportional to the distances at which they were measured.

He hence supposed that the rays which passed by the edge of the hair were deflected or turned aside from it, as if by a repulsive force, the nearest rays suffering the greatest, the more remote a less degree of deflection. In explanation of the coloured fringes, he queried: whether the rays which differ in refrangibility do not differ also in flexibility, and whether they are not, by these different inflections, separated from one another, so as after separation to make the colours in the three fringes above described?

Also, whether the rays, in passing by the edges and sides of bodies, are not bent several times backwards and forwards with an eel-like motion—the three fringes arising from three such bendings? His inquiries on this subject were here interrupted and never renewed.

His Theory of the Colours of Natural Bodies was communicated to the Royal Society, in February, 1675. This is justly regarded as one of the profoundest of his speculations. The fundamental principles of the Theory in brief, are:—That bodies possessing the greatest refractive powers reflect the greatest quantity of light; and that, at the confines of equally refracting media, there is no reflection.

That the minutest particles of almost all natural bodies are in some degree transparent. That between the particles of bodies there are pores, or spaces, either empty or filled with media of a less density than the particles themselves. That these particles, and pores or spaces, have some definite size. Hence he deduced the Transparency, Opacity, and colours of natural bodies.

Transparency arises from the particles and their pores being too small to cause reflection at their common surfaces—the light all passing through; Opacity from the opposite cause of the particles and their pores being sufficiently large to reflect the light which is “stopped or stifled” by the multitude of reflections; and colours from the particles, according to their several sizes, reflecting rays of one colour and transmitting those of another—or in other words, the colour that meets the eye is the colour reflected, while all the other rays are transmitted or absorbed.

Analogous in origin to the colours of natural bodies, he considered the colours of thin plates. This subject was interesting and important, and had attracted considerable investigation. He, however, was the first to determine the law of the production of these colours, and, during the same year made known the results of his researches herein to the Royal Society. His mode of procedure in these experiments was simple and curious.

He placed a double convex lens of a large known radius of curvature, upon the flat surface of a plano-convex object glass. Thus, from their point of contact at the centre, to the circumference of the lens, he obtained plates of air, or spaces varying from the extremest possible thinness, by slow degrees, to a considerable thickness. Letting the light fall, every different thickness of this plate of air gave different colours—the point of contact of the lens and glass forming the centre of numerous concentric colored rings. Now the radius of curvature of the lens being known, the thickness of the plate of air, at any given point, or where any particular colour appeared, could be exactly determined. Carefully noting, therefore, the order in which the different colours appeared, he measured, with the nicest accuracy, the different thicknesses at which the most luminous parts of the rings were produced, whether the medium were air, water, or mica—all these substances giving the same colours at different thicknesses;—the ratio of which he also ascertained.

From the phenomena observed in these experiments, Newton deduced his Theory of Fits of Easy Reflection and Transmission of light. It consists in supposing that every particle of light, from its first discharge from a luminous body, possesses, at equally distant intervals, dispositions to be reflected from, or transmitted through the surfaces of bodies upon which it may fall. For instance, if the rays are in a Fit of Easy Reflection, they are on reaching the surface, repelled, thrown off, or reflected from it; if, in a Fit of Easy Transmission, they are attracted, drawn in, or transmitted through it. By this Theory of Fits, our author likewise explained the colours of thick plates.

He regarded light as consisting of small material particles emitted from shining substances. He thought that these particles could be re-combined into solid matter, so that “gross bodies and light were convertible into one another;” that the particles of light and the particles of solid bodies acted mutually upon each other; those of light agitating and heating those of solid bodies, and the latter attracting and repelling the former. Newton was the first to suggest the idea of the Polarization of light.

In the paper entitled An Hypothesis Explaining Properties of Light, December, 1675, our author first introduced his opinions respecting Ether—opinions which he afterward abandoned and again permanently resumed—“A most subtle spirit which pervades” all bodies, and is expanded through all the heavens. It is electric, and almost, if not quite immeasurably elastic and rare. “By the force and action of which spirit the particles of bodies mutually attract one another, at near distances, and cohere, if contiguous; and electric bodies operate at greater distances, as well repelling as attracting the neighbouring corpuscles; and light is emitted, reflected, refracted, inflected and heats bodies; and all sensation is excited, and the members of animal bodies move at the command of the will, namely, by the vibrations of this spirit, mutually propagated along the solid filaments of the nerves, from the outward organs of sense to the brain, and from the brain into the muscles.” This “spirit” was no anima mundi; nothing further from the thought of Newton; but was it not, on his part, a partial recognition of, or attempt to reach an ultimate material force, or primary element, by means of which, “in the roaring loom of time,” this material universe, God’s visible garment, may be woven for us?

The Royal Society were greatly interested in the results of some experiments, which our author had, at the same time, communicated to them relative to the excitation of electricity in glass; and they, after several attempts and further direction from him, succeeded in re-producing the same phenomena.

One of the most curious of Newton’s minor inquiries related to the connexion between the refractive powers and chemical composition of bodies. He found on comparing the refractive powers and the densities of many different substances, that the former were very nearly proportional to the latter, in the same bodies. Unctuous and sulphureous bodies were noticed as remarkable exceptions—as well as the diamond—their refractive powers being two or three times greater in respect of their densities than in the case of other substances, while, as among themselves, the one was generally proportional to the other. He hence inferred as to the diamond a great degree of combustibility;—a conjecture which the experiments of modern chemistry have shown to be true.

The chemical researches of our author were probably pursued with more or less diligence from the time of his witnessing some of the practical operations in that science at the Apothecary’s at Grantham. De Natura Acidorum is a short chemical paper, on various topics, and published in Dr. Horsley’s Edition of his works. Tabula Quantitatum et Graduum Coloris was inserted in the Philosophical Transactions; it contains a comparative scale of temperature from that of melting ice to that of a small kitchen coal-fire. He regarded fire as a body heated so hot as to emit light copiously; and flame as a vapour, fume, or exhalation heated so hot as to shine. To elective attraction, by the operation of which the small particles of bodies, as he conceived, act upon one another, at distances so minute as to escape observation, he ascribed all the various chemical phenomena of precipitation, combination, solution, and crystallization, and the mechanical phenomena of cohesion and capillary attraction. Newton’s chemical views were illustrated and confirmed, in part, at least, in his own life-time. As to the structure of bodies, he was of opinion “that the smallest particles of matter may cohere by the strongest attractions, and compose bigger particles of weaker virtue; and many of these may cohere and compose bigger particles whose virtue is still weaker; and so on for divers successions, until the progression end in the biggest particles, on which the operations in chemistry and the colours of natural bodies depend, and which by adhering, compose bodies of sensible magnitude.”

There is good reason to suppose that our author was a diligent student of the writings of Jacob Behmen; and that in conjunction with a relative, Dr. Newton, he was busily engaged, for several months in the earlier part of life, in quest of the philosopher’s tincture. “Great Alchymist,” however, very imperfectly describes the character of Behmen, whose researches into things material and things spiritual, things human and things divine, afford the strongest evidence of a great and original mind.

More appropriately here, perhaps, than elsewhere, may be given Newton’s account of some curious experiments, made in his own person, on the action of light upon the retina. Locke, who was an intimate friend of our author, wrote to him for his opinion on a certain fact stated in Boyle’s Book of Colours. Newton, in his reply, dated June 30th, 1691, narrates the following circumstances, which probably took place in the course of his optical researches. Thus:—

“The observation you mention in Mr. Boyle’s Book of Colours I once tried upon myself with the hazard of my eyes. The manner was this; I looked a very little while upon the sun in the looking-glass with my right eye, and then turned my eyes into a dark corner of my chamber, and winked, to observe the impression made, and the circles of colours which encompassed it, and how they decayed by degrees, and at last vanished. This I repeated a second and a third time. At the third time, when the phantasm of light and colours about it were almost vanished, intending my fancy upon them to see their last appearance, I found, to my amazement, that they began to return, and by little and little to become as lively and vivid as when I had newly looked upon the sun. But when I ceased to intend my fancy upon them, they vanished again. After this, I found, that as often as I went into the dark, and intended my mind upon them, as when a man looks earnestly to see anything which is difficult to be seen; I could make the phantasm return without looking any more upon the sun; and the oftener I made it return, the more easily I could make it return again. And, at length, by repeating this, without looking any more upon the sun, I made such an impression on my eye, that, if I looked upon the clouds, or a book, or any bright object, I saw upon it a round bright spot of light like the sun, and, which is still stranger, though I looked upon the sun with my right eye only, and not with my left, yet my fancy began to make an impression upon my left eye, as well us upon my right. For if I shut my right eye, or looked upon a book, or the clouds, with my left eye, I could see the spectrum of the sun almost as plain as with my right eye, if I did but intend my fancy a little while upon it; for at first, if I shut my right eye, and looked with my left, the spectrum of the sun did not appear till I intended my fancy upon it; but by repeating, this appeared every time more easily. And now, in a few hours time, I had brought my eyes to such a pass, that I could look upon no blight object with either eye, but I saw the sun before me, so that I durst neither write nor read; but to recover the use of my eyes, shut myself up in my chamber made dark, for three days together, and used all means to divert my imagination from the sun. For if I thought upon him, I presently saw his picture, though I was in the dark. But by keeping in the dark, and employing my mind about other things, I began in three or four days to have some use of my eyes again; and by forbearing to look upon bright objects, recovered them pretty well, though not so well but that, for some months after, the spectrum of the sun began to return as often as I began to meditate upon the phenomena, even though I lay in bed at midnight with my curtains drawn. But now I have been very well for many years, though I am apt to think, if I durst venture my eyes, I could still make the phantasm return by the power of my fancy. This story I tell you, to let you understand, that in the observation related by Mr. Boyle, the man’s fancy probably concurred with the impression made by the sun’s light to produce that phantasm of the sun which he constantly saw in bright objects. And so your question about the cause of phantasm involves another about the power of fancy, which I must confess is too hard a knot for me to untie. To place this effect in a constant motion is hard, because the sun ought then to appear perpetually. It seems rather to consist in a disposition of the sensorium to move the imagination strongly, and to be easily moved, both by the imagination and by the light, as often as bright objects are looked upon.”

Though Newton had continued silent, yet his thoughts were by no means inactive upon the vast subject of the planetary motions. The idea of Universal Gravitation, first caught sight of, so to speak, in the garden at Woolsthorpe, years ago, had gradually expanded upon him. We find him, in a letter to Dr. Hooke, Secretary of the Royal Society, dated in November, 1679, proposing to verify the motion of the earth by direct experiment, namely, by the observation of the path pursued by a body falling from a considerable height. He had concluded that the path would be spiral; but Dr. Hooke maintained that it would be an eccentric ellipse in vacuo, and an ellipti-spiral in a resisting medium. Our author, aided by this correction of his error, and by the discovery that a projectile would move in an elliptical orbit when under the influence of a force varying inversely as the square of the distance, was led to discover “the theorem by which he afterwards examined the ellipsis;” and to demonstrate the celebrated proposition that a planet acted upon by an attractive force varying inversely as the squares of the distances will describe an elliptical orbit, in one of whose foci the attractive force resides.

Any Comments? Post them below!