Superphysics Superphysics
Chapter 2c

The Effluvia

by Gilbert
16 minutes  • 3291 words

In Quæstiones Platonicæ[137] Plutarch says that there is something flammable or something having the nature of breath in amber.

This is from the attrition of the surface being emitted from its relaxed pores attracts bodies.

If it were an effusion, does it seize upon the air whose motion the bodies follow, or upon the bodies themselves? But if amber allured the body itself, then what need were there of friction, if it is bare and smooth?

Nor does the force arise from the light which is reflected from a smooth and polished body; for a Gem of Vincent’s rock[138], Diamond, and clear glass, attract when they are rough; but not so powerfully and quickly, because they are not so readily cleansed from extraneous moisture on the surface, and are not rubbed equally so as to be copiously resolved at that part.

Nor does the sun by its own beams of light and its rays, which are of capital importance in nature, attract bodies in this way.

Yet the herd of philosophizers considers that humours are attracted by the sun, when it is only denser humours that are being turned into thinner, into spirit and air; and so by the motion of effusion they ascend into the upper regions, or the attenuated exhalations are raised up from the denser air.

Nor does it seem to take place from the effluvia attenuating the air, so that bodies impelled by the denser air penetrate towards the source of the rarefaction; in this case both hot and flaming bodies would also allure other bodies; but not even the lightest chaff, or any versorium moves towards a flame. If there is a flow and rush of air towards the body, how can a small diamond of the size of a pea[139] summon towards itself so much air, that it seizes hold of a biggish long body placed in equilibrio (the air about one or other very small part of an end being attracted)?

It ought also to have slopped or moved more slowly, before it came into contact with the body, especially if the piece of amber was rather broad and flat, from the accumulation of air on the surface of the amber and its flowing back again.

If it is because the effluvia are thinner, and denser vapours come in return, as in breathing, then the body would rather have had a motion toward the electrick a little while after the beginning of the application.

But when electricks which have been rubbed are applied quickly to *a versorium then especially at once they act on the versorium, and it is attracted more when near them.

But if it is because the rarefied {55}effluvia produce a rarefied medium, and on that account bodies are more prone to slip down from a denser to a more attenuated medium; they might have been carried from the side in this way or downwards, but not to bodies above them; or the attraction and apprehension of contiguous bodies would have been momentary only. But with a single friction jet and amber draw and attract bodies to them strongly and for a long time, sometimes for the twelfth part of an hour, especially in clear weather.

But if the mass of amber be rather large, and the surface polished, it attracts without friction. Flint is rubbed and emits by attrition an inflammable matter that turns into sparks and heat.

Therefore, the denser effluvia of flint producing fire are very far different from electrical effluvia, which on account of their extreme attenuation do not take fire, nor are fit material for flame.

Those effluvia are not of the nature of breath, for when emitted they do not propel anything, but are exhaled without sensible resistance and touch bodies.

They are highly attenuated humours much more subtile than the ambient air; and in order that they may occur, bodies are required produced from humour and concreted with a considerable degree of hardness.

Non-electrick bodies are not resolved into humid effluvia, and those effluvia mix with the common and general effluvia of the earth, and are not peculiar.

Also besides the attraction of bodies, they retain them longer. It is probable therefore that amber does exhale something peculiar to *itself, which allures bodies themselves, not the intermediate air.

It plainly does draw the body itself in the case of a spherical drop of water standing on a dry surface; for a piece of amber applied to it at a suitable distance pulls the nearest parts out of their position and draws it up into a cone; otherwise, if it were *drawn by means of the air rushing along, the whole drop would have moved.

That it does not attract the air is thus demonstrated: take a very thin wax candle, which makes a very small and clear flame; bring up to this, within two digits or any convenient distance, a piece of amber or jet, a broad flat piece, well prepared *and skilfully rubbed, such a piece of amber as would attract bodies far and wide, yet it does not disturb the flame; which of necessity would have occurred, if the air was disturbed, for the flame would have followed the current of air.

As far as the effluvia are sent out, so far it allures; but as a body approaches, its motion is accelerated, stronger forces drawing it; as also in the case of magneticks and in all natural motion; not by attenuating or by expelling the air, so that the body moves down into the place of the air which has gone out[140]; for thus it would have allured only and would not have retained; since it would at first also have repelled approaching bodies just as it drives the air itself; but indeed a particle, be it ever so small, does not avoid the first application made very quickly after rubbing. An effluvium exhales from amber and is emitted by rubbing: pearls, carnelian, agate, jasper, chalcedony, coral, metals, {56}and other substances of that kind, when they are rubbed, produce no effect.

Is there not also something which is exhaled from them by heat and attrition? Most truly; but from grosser bodies more blended with the earthy nature, that which is exhaled is gross and spent; for even towards very many electricks, if they are rubbed *too hard, there is produced but a weak attraction of bodies, or none at all.

The attraction is best when the rubbing has been gentle and very quick; for so the finest effluvia are evoked.

The effluvia arise from the subtile diffusion of humour, not from excessive and turbulent violence; especially in the case of those substances which have been compacted from unctuous matter, which when the atmosphere is very thin, when the North winds, and amongst us (English) the East winds, are blowing, have a surer and firmer effect, but during South winds and in damp weather, only a weak one; so that those *substances which attract with difficulty in clear weather, in thick weather produce no motion at all;

both because in grosser air lighter substances move with greater difficulty; and especially because the effluvia are stifled, and the surface of the body that has been rubbed is affected by the spent humour of the air, and the effluvia are stopped at their very starting.

On that account in the case of amber, jet, and sulphur, because they do not so easily take up moist air on their surface and are much more plenteously set free, that force is not so quickly suppressed as in gems, crystal, glass, and substances of that kind which collect on their surface the moister breath which has grown heavy.

But it may be asked why does amber allure water, when water placed on its surface removes its action?

Evidently because it is one thing to suppress it at its very start, and quite another to extinguish it when it has been *emitted.

So also thin and very fine silk, in common language Sarcenet, placed quickly on the amber, after it has been rubbed, *hinders the attraction of the body; but if it is interposed in the intervening space, it does not entirely obstruct it.

Moisture also from spent air, and any breath blown from the mouth, as well as water put on the amber, immediately extinguishes its force. But oil, which is light and pure, does not hinder it; for although amber *be rubbed with a warm finger dipped in oil, still it attracts. But *if that amber, after the rubbing, is moistened with aqua vitæ or spirits of wine, it does not attract; for it is heavier than oil, denser, and when added to oil sinks beneath it. For oil is light and rare, and does not resist the most delicate effluvia.

A breath therefore, proceeding from a body which had been compacted from humour or from a watery liquid, reaches the body to be attracted; the body that is reached is united with the attracting body, and the one body lying near the other within the peculiar radius of its effluvia makes one out of two; united, they come together into the closest accord, and this is commonly called attraction. This unity, according to {57}the opinion of Pythagoras, is the principle of all things, and through participation in it each several thing is said to be one.

For since no action can take place by means of matter unless by contact, these electricks are not seen to touch, but, as was necessary, something is sent from the one to the other, something which may touch closely and be the beginning of that incitement.

All bodies are united and, as it were, cemented together in some way by moisture; so that a wet body, when it touches another body, attracts it, if it is small. So wet bodies on the surface of water attract wet bodies. But the peculiar electrical effluvia, which are the most subtile material of diffuse humour, entice corpuscles. Air (the common effluvium of the earth) not only unites the disjointed parts, but the earth calls bodies back to itself by means of the intervening air; otherwise bodies which are in higher places would not so eagerly make for the earth.

Electrical effluvia differ greatly from air; and as air is the effluvium of the earth, so electricks have their own effluvia and properties, each of them having by reason of its peculiar effluvia a singular tendency toward unity, a motion toward its origin and fount, and toward the body emitting the effluvia. But those substances which by attrition emit a gross or vapourous or aeriform effluvium produce no effect; for either such effluvia are alien to the humour (the uniter of all things), or being very like common air are blended with the air and intermingle with the air, wherefore they produce no effect in the air, and do not cause motions different from those so universal and common in nature.

In like manner *bodies strive to be united and move on the surface of water, just Union of wet things.as the rod C, which is put a little way under water. It is plain that the rod E F, which floats on the water by reason of the cork H, and only has its wet end F above the surface of the water, is attracted by the rod C, if the rod C is wet a little above the surface of the water; they are suddenly united, just as a drop adjoining a drop is attracted.

So a wet thing on the surface of water seeks union with a wet thing, since the surface of the water is raised on both; and they immediately flow together, just like drops or bubbles. But they are in much greater proximity than electricks, and are united by their clammy natures. If, however, the whole rod be dry *above the water, it no longer attracts, but drives away the stick E F.

The same is seen in those bubbles also which are made on {58}water. For we see one drive towards another, and the quicker the nearer they are. Solids are impelled towards solids by the medium of liquid: for example, touch the end of a versorium with the end of a rod on which a drop of water is projecting; as soon as the versorium touches the top of the droplet, immediately it is joined *strongly by a swift motion to the body of the rod.

So concreted humid things attract when a little resolved into air (the effluvia in the intermediate space tending to produce unity); for water has on wet bodies, or on bodies wet with abundant moisture on the top of water, the force of an effluvium. Clear air is a convenient medium for an electrical effluvium excited from concreted humour. Wet bodies projecting above the surface of water (if they are near) run together so that they may unite; for the surface of the water is raised around wet substances.

But a dry thing is not impelled to a wet one, nor a wet to a dry, but seems to run away. For if all is dry above the water, the surface of the water close to it does not rise, but shuns it, the wave sinking around a dry thing. So neither does a wet thing move towards the dry rim of a vessel; but it seeks Union of wet things.a wet rim. A B is the surface of the water; C D two rods, which stand up wet above the water; it is manifest that the surface of the water is raised at C and D along with the rods; and therefore the rod C, by reason of the water standing up (which seeks its level and unity), moves with the water to D.

On E, on the other hand, a wet rod, the water also rises; but on the dry rod F the surface is depressed; and as it drives to depress also the wave rising on E in its neighbourhood, the higher wave at E turns away from F[141]; for it does not suffer itself to be depressed.

All electrical attraction occurs through an intervening humour; so it is by reason of humour that all things mutually come together; fluids indeed and aqueous bodies on the surface of water, but concreted things, if they have been resolved into vapour, in air;—in air indeed, the effluvium of electricks being very rare, that it may the better permeate the medium and not impel it by its motion; for if that effluvium had been thick, as that of air, or of the winds, or of saltpetre burnt by fire, as the thick and foul effluvia given out with very great force, from other bodies, or air set free from humour by heat rushing out through a pipe (in the instrument of Hero of Alexandria, described in his {59}book Spiritalia), then the effluvium would drive everything away, not allure it.

But those rarer effluvia take hold of bodies and embrace them as if with arms extended, with the electricks to which they are united; and they are drawn to the source, the effluvia increasing in strength with the proximity. But what is that effluvium from crystal, glass, and diamond, since these are bodies of considerable hardness and firmly concreted? In order that such an effluvium should be produced, there is no need of any marked or perceptible flux[142] of the substance; nor is it necessary that the electrick should be abraded, or worn away, or deformed. Some odoriferous substances are fragrant for many years, exhaling continually, yet are not quickly consumed.

Cypress wood as long as it is sound, and it lasts a very long time indeed, is redolent; as many learned men attest from experience. Such an electrick only for a moment, when stimulated by friction, emits powers far more subtile and more fine beyond all odours; yet sometimes amber, jet, sulphur, when they are somewhat easily let free into vapour, also pour out at the same time an odour; and on this account they allure with the very gentlest rubbing, often even without rubbing; they also excite more strongly, and retain hold for a longer time, because they have stronger effluvia and last longer.

But diamond, glass, rock-crystal, *and numerous others of the harder and firmly concreted gems first grow warm: therefore at first they are rubbed longer, and then they also attract strongly; nor are they otherwise set free into vapour. Everything rushes towards electricks[143] excepting flame, and flaming bodies, and the thinnest air. Just as they do not draw flame, in like manner they do not affect a versorium, if on any side it is very near to a flame, either the flame of a lamp or of any burning matter.

The effluvia are destroyed by flame and igneous *heat; and therefore they attract neither flame nor bodies very near a flame.

For electrical effluvia have the virtue of, and are analogous with, extenuated humour; but they will produce their effect, union and continuity, not by the external impulse of vapours, not by heat and attenuation of heated bodies, but by their humidity itself attenuated into its own peculiar effluvia.

Yet they entice *smoke sent out by an extinguished light; and the more that smoke is attenuated in seeking the upper regions, the less strongly is it turned aside; for things that are too rarefied are not drawn to them; and at length, when it has now almost vanished, it does not *incline towards them at all, which is easily seen against the light. When in fact the smoke has passed into air, it is not moved, as has been demonstrated before.

For air itself, if somewhat thin, is not attracted in any way, unless on account of succeeding that which has vacated its place, as in furnaces and such-like, where the air is fed in by mechanical devices for drawing it in. Therefore an effluvium resulting from a non-fouling friction, and one which {60}is not changed by heat, but which is its own, causes union and coherency, a prehension and a congruence towards its source, if only the body to be attracted is not unfitted for motion, either by the surroundings of the bodies or by its own weight.

To the bodies therefore of the electricks themselves small bodies are borne. The effluvia extend out their virtue—effluvia which are proper and peculiar to them, and sui generis, differing from common air, being produced from humour, excited by a calorifick motion from attrition and attenuation.

And as if they were material rays[144], they hold and take up chaff, straws, and twigs, until they become extinct or vanish away: and then they (the corpuscles) being loosed again, attracted by the earth itself, fall down to the earth.

The difference between Magneticks and Electricks[145] is that all magneticks run together with mutual forces; electricks only allure; that which is allured is not changed by an implanted force, but that which has moved up to *them voluntarily rests upon them by the law of matter.

Bodies are borne towards electricks in a straight line towards the centre of the electrick; a loadstone draws a loadstone directly at the poles only, in other parts obliquely and transversely, and in this way also they adhere and hang to one another.

Electrical motion is a motion of aggregation of matter; magnetical motion is one of disposition and conformation. The globe of the earth is aggregated and cohæres by itself electrically. The globe of the earth is directed and turned magnetically; at the same time also it both cohæres, and in order that it may be solid, is in its inmost parts cemented together.

Any Comments? Post them below!