Day 4e

Theorem 15

14 min read 2878 words
Table of Contents

Theorem 15, Proposition 24

Given two parallel horizontal planes and a vertical line connecting them; given also an inclined plane passing through the lower extremity of this vertical line; then, if a body fall freely along the vertical line and have its motion reflected along the inclined plane, the distance which it will traverse along this plane, during a time equal to that of the vertical fall, is greater than once but less than twice the vertical line.

Let BC and HG be the two horizontal planes, connected by the perpendicular AE; also let EB represent the inclined plane along which the motion takes place after the body has fallen along AE and has been reflected from E towards B.

Then, I say, that, during a time equal to that of fall along AE, the body will ascend the inclined plane through a distance which is greater than AE but less than twice AE. Lay off ED equal to AE and choose F so that EB:BD=BD:BF. First we shall show that F is the point to which the moving body will be carried after reflection from E towards B during a time equal to that of fall along AE; and next we shall show that the distance EF is greater than EA but less than twice that quantity.

Fig. 85

Let us agree to represent the time of fall along AE by the length AE, then the time of descent along BE, or what is the same thing, ascent along EB will be represented by the distance EB.

Now, since DB is a mean proportional between EB and BF, and since BE is the time of descent for the entire distance BE, it follows that BD will be the time of descent through BF, while the remainder DE will be the time of descent along the remainder FE. But the time of descent along the fall from rest at B is the same as the time of ascent from E to F after reflection from E with the speed acquired during fall either through AE or BE. Therefore DE represents the time occupied by the body in passing from E to F, after fall from A to E and after reflection along EB. But by construction ED is equal to AE. This concludes the first part of our demonstration.

Now since the whole of EB is to the whole of BD as the portion DB is to the portion BF, we have the whole of EB is to the whole of BD as the remainder ED is to the remainder DF; but EB>BD and hence ED>DF, and EF is less than twice DE or AE.

q. e. d.

The same is true when the initial motion occurs, not along a perpendicular, but upon an inclined plane: the proof is also the same provided the upward sloping plane is less steep, i. e., longer, than the downward sloping plane.

Theorem XVI, Proposition XXV If descent along any inclined plane is followed by motion along a horizontal plane, the time of descent along the inclined plane bears to the time required to traverse any assigned length of the horizontal plane the same ratio which twice the length of the inclined plane bears to the given horizontal length.

Let CB be any horizontal line and AB an inclined plane; after descent along AB let the motion continue through the assigned horizontal distance BD. Then, I say, the time of descent along AB bears to the time spent in traversing BD the same ratio which twice AB bears to BD. For, lay off BC equal to twice AB then it follows, from a previous proposition, that the time of descent along AB is equal to the time required to traverse BC; but the time along BC is to the time along DB as the length CB is to the length BD. Hence the time of descent along AB is to the time along BD as twice the distance AB is to the distance BD.

q. e. d.

Fig. 86

Problem 10, Proposition 26

Given a vertical height joining two horizontal parallel lines; given also a distance greater than once and less than twice this vertical height, it is required to pass through the foot of the given perpendicular an inclined plane such that, after fall through the given vertical height, a body whose motion is deflected along the plane will traverse the assigned distance in a time equal to the time of vertical fall.

Let AB be the vertical distance separating two parallel horizontal lines AO and BC; also let FE be greater than once and less than twice BA. The problem is to pass a plane through B, extending to the upper horizontal line, and such that a body, after having fallen from A to B, will, if its motion be deflected along the inclined plane, traverse a distance equal to EF in a time equal to that of fall along AB. Lay off ED equal to AB; then the remainder DF will be less than AB since the entire length EF is less than twice this quantity; also lay off DI equal to DF, and choose the point X such that EI:ID=DF:FX; from B, draw the plane BO equal in length to EX.

Then, I say, that the plane BO is the one along which, after fall through AB, a body will traverse the assigned distance FE in a time equal to the time of fall through AB. Lay off BR and RS equal to ED and DF respectively; then since EI:ID=DF:FX, we have, componendo, ED:DI=DX:XF=ED:DF=EX:XD=BO:OR=RO:OS. If we represent the time of fall along AB by the length AB, then OB will represent the time of descent along OB, and RO will stand for the time along OS, while the remainder BR will represent the time required for a body starting from rest at O to traverse the remaining distance SB. But the time of descent along SB starting from rest at O is equal to the time of ascent from B to S after fall through AB. Hence BO is that plane, passing through B, along which a body, after fall through AB, will traverse the distance BS, equal to the assigned distance EF, in the time-interval BR or BA.

q. e. f.

Fig. 87

Theorem 17, Proposition 27

If a body descends along two inclined planes of different lengths but of the same vertical height, the distance which it will traverse, in the lower part of the longer plane, during a time-interval equal to that of descent over the shorter plane, is equal to the length of the shorter plane plus a portion of it to which the shorter plane bears the same ratio which the longer plane bears to the excess of the longer over the shorter plane.

Let AC be the longer plane, AB, the shorter, and AD the common elevation; on the lower part of AC lay off CE equal to AB. Choose F such that CA:AE=CA:CA-AB=CE:EF.

Then, I say, that FC is that distance which will, after fall from A, be traversed during a time-interval equal to that required for descent along AB. For since CA:AE=CE:EF, it follows that the remainder EA: the remainder AF = CA:AE. Therefore AE is a mean proportional between AC and AF.

Accordingly if the length AB is employed to measure the time of fall along AB, then the distance AC will measure the time of descent through AC; but the time of descent through AF is measured by the length AE, and that through FC by EC. Now EC=AB; and hence follows the proposition.

Fig. 88

Problem 11, Proposition 28

Let AG be any horizontal line touching a circle; let AB be the diameter passing through the point of contact; and let AE and EB represent any two chords.

The problem is to determine what ratio the time of fall through AB bears to the time of descent over both AE and EB. Extend BE till it meets the tangent at G, and draw AF so as to bisect the angle BAE.

Then, the time through AB is to the sum of the times along AE and EB as the length AE is to the sum of the lengths AE and EF. For since the angle FAB is equal to the angle FAE, while the angle EAG is equal to the angle ABF it follows that the entire angle GAF is equal to the sum of the angles FAB and ABF.

But the angle GFA is also equal to the sum of these two angles. Hence the length GF is equal to the length GA; and since the rectangle BG.GE is equal to the square of GA, it will also be equal to the square of GF, or BG:GF=GF:GE.

If now we agree to represent the time of descent along AE by the length AE, then the length GE will represent the time of descent along GE, while GF will stand for the time of descent through the entire distance GB; so also EF will denote the time through EB after fall from G or from A along AE.

Consequently the time along AE, or AB, is to the time along AE and EB as the length AE is to AE+EF.

q. e. d.

Fig. 89

A shorter method is to lay off GF equal to GA, thus making GF a mean proportional between BG and GE. The rest of the proof is as above.

Theorem 18, Proposition 29

Given a limited horizontal line, at one end of which is erected a limited vertical line whose length is equal to one-half the given horizontal line; then a body, falling through this given height and having its motion deflected into a horizontal direction, will traverse the given horizontal distance and vertical line in less time than it will any other vertical distance plus the given horizontal distance.

Let BC be the given distance in a horizontal plane; at the end B erect a perpendicular, on which lay off BA equal to half BC. Then, I say, that the time required for a body, starting from rest at A, to traverse the two distances, AB and BC, is the least of all possible times in which this same distance BC together with a vertical portion, whether greater or less than AB, can be traversed.

Fig. 90

Lay off EB greater than AB, as in the first figure, and less than AB, as in the second. It must be shown that the time required to traverse the distance EB plus BC is greater than that required for AB plus BC. Let us agree that the length AB shall represent the time along AB, then the time occupied in traversing the horizontal portion BC will also be AB, seeing that BC=2AB; consequently the time required for both AB and BC will be twice AB. Choose the point O such that EB:BO=BO:BA, then BO will represent the time of fall through EB. Again lay off the horizontal distance BD equal to twice BE; whence it is clear that BO represents the time along BD after fall through EB. Select a point N such that DB:BC=EB:BA=OB:BN. Now since the horizontal motion is uniform and since OB is the time occupied in traversing BD, after fall from E, it follows that NB will be the time along BC after fall through the same height EB. Hence it is clear that OB plus BN represents the time of traversing EB plus BC; and, since twice BA is the time along AB plus BC, it remains to be shown that OB+BN>2BA.

But since EB:BO=BO:BA, it follows that EB:BA=OBmacronsup2:BAmacronsup2. Moreover since EB:BA=OB:BN it follows that OB:BN=OBmacronsup2:BAmacronsup2. But OB:BN=(OB:BA) (BA:BN), and therefore AB:BN=OB:BA, that is, BA is a mean proportional between BO and BN. Consequently OB+BN>2BA.

q. e. d.

Theorem 19, Proposition 30

A perpendicular is let fall from any point in a horizontal line; it is required to pass through any other point in this same horizontal line a plane which shall cut the perpendicular and along which a body will descend to the perpendicular in the shortest possible time. Such a plane will cut from the perpendicular a portion equal to the distance of the assumed point in the horizontal from the upper end of the perpendicular.

Let AC be any horizontal line and B any point in it from which is dropped the vertical line BD. Choose any point C in the horizontal line and lay off, on the vertical, the distance BE equal to BC; join C and E. Then, I say, that of all inclined planes that can be passed through C, cutting the perpendicular, CE is that one along which the descent to the perpendicular is accomplished in the shortest time. For, draw the plane CF cutting the vertical above E, and the plane CG cutting the vertical below E; and draw IK, a parallel vertical line, touching at C a circle described with BC as radius.

Let EK be drawn parallel to CF, and extended to meet the tangent, after cutting the circle at L. Now it is clear that the time of fall along LE is equal to the time along CE; but the time along KE is greater than along LE; therefore the time along KE is greater than along CE. But the time along KE is equal to the time along CF, since they have the same length and the same slope; and, in like manner, it follows that the planes CG and IE, having the same length and the same slope, will be traversed in equal times. Also, since HE < IE, the time along HE will be less than the time along IE.

Therefore also the time along CE (equal to the time along HE), will be shorter than the time along IE.

q. e. d.

Fig. 91

Theorem 20, Proposition 31

If a straight line is inclined at any angle to the horizontal and if, from any assigned point in the horizontal, a plane of quickest descent is to be drawn to the inclined line, that plane will be the one which bisects the angle contained between two lines drawn from the given point, one perpendicular to the horizontal line, the other perpendicular to the inclined line.

Let CD be a line inclined at any angle to the horizontal AB; and from any assigned point A in the horizontal draw AC perpendicular to AB, and AE perpendicular to CD; draw FA so as to bisect the angle CAE. Then, I say, that of all the planes which can be drawn through the point A, cutting the line CD at any points whatsoever AF is the one of quickest descent [in quo tempore omnium brevissimo fiat descensus]. Draw FG parallel to AE; the alternate angles GFA and FAE will be equal; also the angle EAF is equal to the angle FAG. Therefore the sides GF and GA of the triangle FGA are equal. Accordingly if we describe a circle about G as center, with GA as radius, this circle will pass through the point F, and will touch the horizontal at the point A and the inclined line at F; for GFC is a right angle, since GF and AE are parallel. It is clear therefore that all lines drawn from A to the inclined line, with the single exception of FA, will extend beyond the circumference of the circle, thus requiring more time to traverse any of them than is needed for FA.

q. e. d.

Fig. 92

LEMMA

If 2 circles one lying within the other are in contact, and if any straight line be drawn tangent to the inner circle, cutting the outer circle, and if three lines be drawn from the point at which the circles are in contact to three points on the tangential straight line, namely, the point of tangency on the inner circle and the two points where the straight line extended cuts the outer circle, then these three lines will contain equal angles at the point of contact.

Let the two circles touch each other at the point A, the center of the smaller being at B, the center of the larger at C. Draw the straight line FG touching the inner circle at H, and cutting the outer at the points F and G; also draw the three lines AF, AH, and AG. Then, I say, the angles contained by these lines, FAH and GAH, are equal. Prolong AH to the circumference at I; from the centers of the circles, draw BH and CI; join the centers B and C and extend the line until it reaches the point of contact at A and cuts the circles at the points O and N. But now the lines BH and CI are parallel, because the angles ICN and HBO are equal, each being twice the angle IAN. And since BH, drawn from the center to the point of contact is perpendicular to FG, it follows that CI will also be perpendicular to FG and that the arc FI is equal to the arc IG; consequently the angle FAI is equal to the angle IAG.

q. e. d.

Fig. 93

Send us your comments!