Day 2i

The Parabola

Sep 25, 2025
11 min read 2195 words
Table of Contents
Sagredo

The circumscribed shape is larger than 1/3 of the rectangle CP. This will not prove so easy.

Sagredo
Salviati
Salviati

There is nothing very difficult about it.

Since in the parabola DEmacronsup2:ZGmacronsup2=DA:AZ= rectangle KE: rectangle AG, seeing that the altitudes of these two rectangles, AK and KL, are equal, it follows that EDmacronsup2:ZGmacronsup2=LAmacronsup2:AKmacronsup2=rectangle KE: rectangle KZ. In precisely the same manner it may be shown that the other rectangles LF, MH, NI, OB, stand to one another in the same ratio as the squares of the lines MA, NA, OA, PA.

The circumscribed shape is composed of areas which bear to each other the same ratio as the squares of a series of lines whose common difference in length is equal to the shortest one in the series.

Note also that the rectangle CP is made up of an equal number of areas each equal to the largest and each equal to the rectangle OB. Consequently, according to the lemma of Archimedes, the circumscribed figure is larger than a third part of the rectangle CP; but it was also smaller, which is impossible. Hence the “mixed triangle” is not less than a third part of the rectangle CP.

Likewise, I say, it cannot be greater. For, let us suppose that it is greater than a third part of the rectangle CP and let the area X represent the excess of the triangle over the third part of the rectangle CP; subdivide the rectangle into equal rectangles and continue the process until one of these subdivisions is smaller than the area X. Let BO represent such a rectangle smaller than X. Using the above figure, we have in the “mixed triangle” an inscribed figure, made up of the rectangles VO, TN, SM, RL, and QK, which will not be less than a third part of the large rectangle CP.

For the “mixed triangle” exceeds the inscribed figure by a quantity less than that by which it exceeds the third part of the rectangle CP; to see that this is true we have only to remember that the excess of the triangle over the third part of the rectangle CP is equal to the area X, which is less than the rectangle BO, which in turn is much less than the excess of the triangle over the inscribed figure.

For the rectangle BO is made up of the small rectangles AG, GE, EF, FH, HI, and IB; and the excess of the triangle over the inscribed figure is less than half the sum of these little rectangles. Thus since the triangle exceeds the third part of the rectangle CP by an amount X, which is more than that by which it exceeds the inscribed figure, the latter will also exceed the third part of the rectangle, CP. But, by the lemma which we have assumed, it is smaller. For the rectangle CP, being the sum of the largest rectangles, bears to the component rectangles of the inscribed figure the same ratio which the sum of all the squares of the lines equal to the longest bears to the squares of the lines which have a common difference, after the square of the longest has been subtracted.

Therefore, as in the case of squares, the sum total of the largest rectangles, i. e., the rectangle CP, is greater than three times the sum total of those having a common difference minus the largest; but these last make up the inscribed figure. Hence the “mixed triangle” is neither greater nor less than the third part of rectangle CP; it is therefore equal to it.

Sagredo

A fine, clever demonstration; and all the more so because it gives us the quadrature of the parabola, proving it to be four-thirds of the inscribed * triangle, a fact which Archimedes demonstrates by means of two different, but admirable, series of many propositions. This same theorem has also been recently established by Luca Valerio, * the Archimedes of our age; his demonstration is to be found in his book dealing with the centers of gravity of solids.

Sagredo
Salviati
Salviati

A book which is not to be placed second to any produced by the most eminent geometers either of the present or of the past; a book which, as soon as it fell into the hands of our Academician, led him to abandon his own researches along these lines; for he saw how happily everything had been treated and demonstrated by Valerio.

Sagredo

When I was informed of this event by the Academician himself, I begged of him to show the demonstrations which he had discovered before seeing Valerio’s book; but in this I did not succeed.

Considering the strength of a solid formed from a prism by means of a parabolic section, would it not, in view of the fact that this result promises to be both interesting and useful in many mechanical operations, be a fine thing if you were to give some quick and easy rule by which a mechanician might draw a parabola upon a plane surface?

Sagredo
Salviati
Salviati

There are many ways of tracing these curves.

I will mention merely the 2 which are the quickest of all.

One of these is really remarkable; because by it I can trace thirty or forty parabolic curves with no less neatness and precision, and in a shorter time than another man can, by the aid of a compass, neatly draw four or six circles of different sizes upon paper.

I take a perfectly round brass ball about the size of a walnut and project it along the surface of a metallic mirror held in a nearly upright position, so that the ball in its motion will press slightly upon the mirror and trace out a fine sharp parabolic line; this parabola will grow longer and narrower as the angle of elevation increases.

The above experiment furnishes clear and tangible evidence that the path of a projectile is a parabola; a fact first observed by our friend and demonstrated by him in his book on motion which we shall take up at our next meeting. In the execution of this method, it is advisable to slightly heat and moisten the ball by rolling in the hand in order that its trace upon the mirror may be more distinct.

The other method of drawing the desired curve upon the face of the prism is the following: Drive two nails into a wall at a convenient height and at the same level; make the distance between these nails twice the width of the rectangle upon which it is desired to trace the semiparabola.

Over these two nails hang a light chain of such a length that the depth of its sag is equal to the length of the prism. This chain will assume the form of a parabola, so that if this form be marked by points on the wall we shall have described a complete parabola which can be divided into two equal parts by drawing a vertical line through a point midway between the two nails. The transfer of this curve to the two opposing faces of the prism is a matter of no difficulty; any ordinary mechanic will know how to do it.

By use of the geometrical lines drawn upon our friend’s compass,

one may easily lay off those points which will locate this same curve upon the same face of the prism.

Hitherto we have demonstrated numerous conclusions pertaining to the resistance which solids offer to fracture.

As a starting point for this science, we assumed that the resistance offered by the solid to a straight-away pull was known; from this base one might proceed to the discovery of many other results and their demonstrations; of these results the number to be found in nature is infinite.

But, in order to bring our daily conference to an end, I wish to discuss the strength of hollow solids, which are employed in art—and still oftener in nature—in a thousand operations for the purpose of greatly increasing strength without adding to weight; examples of these are seen in the bones of birds and in many kinds of reeds which are light and highly resistant both to bending and breaking.

For if a stem of straw which carries a head of wheat heavier than the entire stalk were made up of the same amount of material in solid form it would offer less resistance to bending and breaking.

This is an experience which has been verified and confirmed in practice where it is found that a hollow lance or a tube of wood or metal is much stronger than would be a solid one of the same length and weight, one which would necessarily be thinner; men have discovered, therefore, that in order to make lances strong as well as light they must make them hollow. We shall now show that:

In the case of two cylinders, one hollow the other solid but having equal volumes and equal lengths, their resistances [bending strengths] are to each other in the ratio of their diameters.

Let AE denote a hollow cylinder and IN a solid one of the same weight and length; then, I say, that the resistance against fracture exhibited by the tube AE bears to that of the solid cylinder IN the same ratio as the diameter AB to the diameter IL.

The tube and the solid cylinder IN have the same volume and length, the area of the circular base IL will be equal to that of the annulus AB which is the base of the tube AE. (By annulus is here meant the area which lies between two concentric circles of different radii.)

Hence their resistances to a straight-away pull are equal; but in producing fracture by a transverse pull we employ, in the case of the cylinder IN, the length LN as one lever arm, the point L as a fulcrum, and the diameter LI, or its half, as the opposing lever arm: while in the case of the tube, the length BE which plays the part of the first lever arm is equal to LN, the opposing lever arm beyond the fulcrum, B, is the diameter AB, or its half.

Manifestly then the resistance [bending strength] of the tube exceeds that of the solid cylinder in the proportion in which the diameter AB exceeds the diameter IL which is the desired result.

Thus, the strength of a hollow tube exceeds that of a solid cylinder in the ratio of their diameters whenever the two are made of the same material and have the same weight and length.

Fig. 37

It may be well next to investigate the general case of tubes and solid cylinders of constant length, but with the weight and the hollow portion variable. First we shall show that:

Given a hollow tube, a solid cylinder may be determined which will be equal [eguale] to it.

The method is very simple. Let AB denote the external and CD the internal diameter of the tube. In the larger circle lay off the line AE equal in length to the diameter CD; join the points E and B.

Since the angle at E inscribed in a semicircle, AEB, is a right-angle, the area of the circle whose diameter is AB is equal to the sum of the areas of the two circles whose respective diameters are AE and EB.

But AE is the diameter of the hollow portion of the tube.

Therefore the area of the circle whose diameter is EB is the same as the area of the annulus ACBD. Hence a solid cylinder of circular base having a diameter EB will have the same volume as the walls of the tube of equal length.

Fig. 38

By use of this theorem, it is easy:

To find the ratio between the resistance [bending strength] of any tube and that of any cylinder of equal length.

Let ABE denote a tube and RSM a cylinder of equal length: it is required to find the ratio between their resistances. Using the preceding proposition, determine a cylinder ILN which shall have the same volume and length as the tube. Draw a line V of such a length that it will be related to IL and RS (diameters of the bases of the cylinders IN and RM), as follows: V:RS=RS:IL.

Then the resistance of the tube AE is to that of the cylinder RM as the length of the line AB is to the length V.

For, since the tube AE is equal both in volume and length, to the cylinder IN, the resistance of the tube will bear to the resistance of the cylinder the same ratio as the line AB to IL.

But the resistance of the cylinder IN is to that of the cylinder RM as the cube of IL is to the cube of RS, as the length IL is to length V.

Therefore, ex æquali, the resistance [bending strength] of the tube AE bears to the resistance of the cylinder RM the same ratio as the length AB to V.

q. e. d.

Fig. 39

end of second day.

Send us your comments!