Superphysics Superphysics
Chapter 17c

3: Heat and Cold

Icon
9 minutes  • 1729 words
  1. Here, man’s power limps with one leg.

We have the heat of fire, which is infinitely more powerful and intense than that of the sun as it reaches us, and that of animals.

But we want cold,[162] except such as we can obtain in winter, in caverns, or by surrounding objects with snow and ice, which, perhaps, may be compared in degree with the noontide heat of the sun in tropical countries, increased by the reflection of mountains and walls.

This degree of heat and cold can be borne for a short period only by animals, yet it is nothing compared with the heat of a burning furnace, or the corresponding degree of cold.[163] Everything with us has a tendency to become rarefied, dry and wasted, and nothing[276] to become condensed or soft, except by mixtures, and, as it were, spurious methods.

Instances of cold, therefore, should be searched for most diligently, such as may be found by exposing bodies upon buildings in a hard frost, in subterraneous caverns, by surrounding bodies with snow and ice in deep places excavated for that purpose, by letting bodies down into wells, by burying bodies in quicksilver and metals, by immersing them in streams which petrify wood, by burying them in the earth (which the Chinese are reported to do with their china, masses of which, made for that purpose, are said to remain in the ground for forty or fifty years, and to be transmitted to their heirs as a sort of artificial mine) and the like.

The condensations which take place in nature, by means of cold, should also be investigated, that by learning their causes, they may be introduced into the arts; such as are observed in the exudation of marble and stones, in the dew upon the panes of glass in a room toward morning after a frosty night, in the formation and the gathering of vapors under the earth into water, whence spring fountains and the like.

Besides the substances which are cold to the touch, there are others which have also the effect of cold, and condense; they appear, however, to act only upon the bodies of animals, and scarcely any further. Of these we have many instances, in medicines and plasters.

Some condense the flesh and tangible parts, such as astringent and inspissating medicines, others the spirits, such as soporifics. There are two modes of condensing the spirits, by soporifics or provocatives to sleep; the one by calming the motion, the other by expelling the spirit.

The violet, dried roses, lettuces, and other benign or mild remedies, by their friendly and gently cooling vapors, invite the spirits[277] to unite, and restrain their violent and perturbed motion. Rose-water, for instance, applied to the nostrils in fainting fits, causes the resolved and relaxed spirits to recover themselves, and, as it were, cherishes them.

But opiates, and the like, banish the spirits by their malignant and hostile quality.

If they be applied, therefore, externally, the spirits immediately quit the part and no longer readily flow into it; but if they be taken internally, their vapor, mounting to the head, expels, in all directions, the spirits contained in the ventricles of the brain, and since these spirits retreat, but cannot escape, they consequently meet and are condensed, and are sometimes completely extinguished and suffocated.

The same opiates, when taken in moderation, by a secondary accident (the condensation which succeeds their union), strengthen the spirits, render them more robust, and check their useless and inflammatory motion, by which means they contribute not a little to the cure of diseases, and the prolongation of life.

The preparations of bodies, also, for the reception of cold should not be omitted, such as that water a little warmed is more easily frozen than that which is quite cold, and the like.

Moreover, since nature supplies cold so sparingly, we must act like the apothecaries, who, when they cannot obtain any simple ingredient, take a succedaneum, or quid pro quo, as they term it, such as aloes for xylobalsamum, cassia for cinnamon. In the same manner we should look diligently about us, to ascertain whether there may be any substitutes for cold, that is to say, in what other manner condensation can be effected, which is the peculiar operation of cold.

Such condensations have 4 kinds only:

  1. By simple compression, which is of little[278] avail toward permanent condensation, on account of the elasticity of substances, but may still, however, be of some assistance.

  2. By the contraction of the coarser, after the escape or departure of the finer parts of a given body; as is exemplified in induration by fire, and the repeated heating and extinguishing of metals, and the like.

  3. By the cohesion of the most solid homogeneous parts of a given body, which were previously separated, and mixed with others less solid, as in the return of sublimated mercury to its simple state, in which it occupies much less space than it did in powder, and the same may be observed of the cleansing of all metals from their dross.

  4. By harmony, or the application of substances which condense by some latent power. These harmonies are as yet but rarely observed, at which we cannot be surprised, since there is little to hope for from their investigation, unless the discovery of forms and confirmation be attained.

With regard to animal bodies, it is not to be questioned that there are many internal and external medicines which condense by harmony, as we have before observed, but this action is rare in inanimate bodies. Written accounts, as well as report, have certainly spoken of a tree in one of the Tercera or Canary Islands (for I do not exactly recollect which) that drips perpetually, so as to supply the inhabitants, in some degree, with water; and Paracelsus says that the herb called ros solis is filled with dew at noon, while the sun gives out its greatest heat, and all other herbs around it are dry. We treat both these accounts as fables; they would, however, if true, be of the most important service, and most worthy of examination. As to the honey-dew, resembling manna, which is found in May on the leaves of the oak, we are of opinion that it is not condensed by any harmony or peculiarity[279] of the oak leaf, but that while it falls equally upon other leaves it is retained and continues on those of the oak, because their texture is closer, and not so porous as that of most of the other leaves.[164]

With regard to heat, man possesses abundant means and power; but his observation and inquiry are defective in some respects, and those of the greatest importance, notwithstanding the boasting of quacks. For the effects of intense heat are examined and observed, while those of a more gentle degree of heat, being of the most frequent occurrence in the paths of nature, are, on that very account, least known. We see, therefore, the furnaces, which are most esteemed, employed in increasing the spirits of bodies to a great extent, as in the strong acids, and some chemical oils; while the tangible parts are hardened, and, when the volatile part has escaped, become sometimes fixed; the homogeneous parts are separated, and the heterogeneous incorporated and agglomerated in a coarse lump; and (what is chiefly worthy of remark) the junction of compound bodies, and the more delicate conformations are destroyed and confounded.

But the operation of a less violent heat should be tried and investigated, by which more delicate mixtures and regular conformations may be produced and elicited, according to the example of nature, and in imitation of the effect of the sun, which we have alluded to in the aphorism on the instances of alliance. For the works of nature are carried on in much smaller portions, and in more delicate and varied positions than those of fire, as we now employ it. But man will then appear to have really augmented his power, when the works of nature can be[280] imitated in species, perfected in power, and varied in quantity; to which should be added the acceleration in point of time.

Rust, for instance, is the result of a long process. But crocus martis is obtained immediately.

The same is true of natural verdigris and ceruse.

Crystal is formed slowly, while glass is blown immediately.

Stones increase slowly, while bricks are baked immediately, etc. In the meantime (with regard to our present subject) every different species of heat should, with its peculiar effects, be diligently collected and inquired into; that of the heavenly bodies, whether their rays be direct, reflected, or refracted, or condensed by a burning-glass; that of lightning, flame, and ignited charcoal; that of fire of different materials, either open or confined, straitened or overflowing, qualified by the different forms of the furnaces, excited by the bellows, or quiescent, removed to a greater or less distance, or passing through different media; moist heats, such as the balneum Mariæ, and the dunghill; the external and internal heat of animals; dry heats, such as the heat of ashes, lime, warm sand; in short, the nature of every kind of heat, and its degrees.

We should, however, particularly attend to the investigation and discovery of the effects and operations of heat, when made to approach and retire by degrees, regularly, periodically, and by proper intervals of space and time. For this systematical inequality is in truth the daughter of heaven and mother of generation, nor can any great result be expected from a vehement, precipitate, or desultory heat. For this is not only most evident in vegetables, but in the wombs of animals also there arises a great inequality of heat, from the motion, sleep, food, and passions of the female. The same inequality prevails in those subterraneous[281] beds where metals and fossils are perpetually forming, which renders yet more remarkable the ignorance of some of the reformed alchemists, who imagined they could attain their object by the equable heat of lamps, or the like, burning uniformly. Let this suffice concerning the operation and effects of heat; nor is it time for us to investigate them thoroughly before the forms and conformations of bodies have been further examined and brought to light. When we have determined upon our models, we may seek, apply, and arrange our instruments.

Any Comments? Post them below!